分析 (Ⅰ)利用等差數(shù)列{an}的通項公式求出公差d=2,由此能求出an.
(Ⅱ)由a1=1,an=2n-1,求出${S_n}=\frac{{{a_1}+{a_n}}}{2}n={n^2}$,由此能求出滿足不等式Sn<3an-2的n的值.
解答 解:(Ⅰ)設(shè)數(shù)列{an}的公差為d.….(1分)
因為a3+a5=a4+7,所以2a1+6d=a1+3d+7.….(3分)
因為a1=1,所以3d=6,即d=2,….(5分)
所以an=a1+(n-1)d=2n-1.….(7分)
(Ⅱ)因為a1=1,an=2n-1,所以${S_n}=\frac{{{a_1}+{a_n}}}{2}n={n^2}$,….(9分)
所以n2<3(2n-1)-2,所以n2-6n+5<0,….(11分)
解得1<n<5,所以n的值為2,3,4.….(13分)
點評 本題考查數(shù)列的通項公式的求法,考查滿足不等式的值的求法,是中檔題,解題時要認(rèn)真審題,注意等差數(shù)列性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$-\frac{3}{8}$+k,$\frac{1}{8}$+k](k∈Z) | B. | (-$\frac{1}{8}$+k,$\frac{1}{8}$+k](k∈Z) | C. | [$-\frac{3}{8}$+k,$\frac{1}{8}$+k](k∈Z) | D. | [$\frac{1}{8}$+k,$\frac{3}{8}$+k)(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{5}}{3}$ | B. | $\frac{4\sqrt{5}}{3}$ | C. | 4$\sqrt{5}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a5≥b5 | B. | a5≤b5 | C. | a5>b5 | D. | a5<b5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com