【題目】在數(shù)列{an}中,a1=2,an+1=4an﹣3n+1,n∈N* .
(1)證明數(shù)列{an﹣n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn;
(3)證明不等式Sn+1≤4Sn , 對任意n∈N*皆成立.
【答案】
(1)證明:由題設(shè)an+1=4an﹣3n+1,得an+1﹣(n+1)=4(an﹣n),n∈N*.
又a1﹣1=1,所以數(shù)列{an﹣n}是首項為1,且公比為4的等比數(shù)列.
(2)解:由(1)可知an﹣n=4n﹣1,于是數(shù)列{an}的通項公式為an=4n﹣1+n.
所以數(shù)列{an}的前n項和 .
(3)證明:對任意的n∈N*, = .
所以不等式Sn+1≤4Sn,對任意n∈N*皆成立.
【解析】(1)整理題設(shè)an+1=4an﹣3n+1得an+1﹣(n+1)=4(an﹣n),進而可推斷數(shù)列{an﹣n}是等比數(shù)列.(2)由(1)可數(shù)列{an﹣n}的通項公式,進而可得{an}的通項公式根據(jù)等比和等差數(shù)列的求和公式,求得Sn . (3)把(2)中求得的Sn代入Sn+1﹣4Sn整理后根據(jù) 證明原式.
【考點精析】利用等比關(guān)系的確定和數(shù)列的前n項和對題目進行判斷即可得到答案,需要熟知等比數(shù)列可以通過定義法、中項法、通項公式法、前n項和法進行判斷;數(shù)列{an}的前n項和sn與通項an的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記a=logsin1cos1,b=logsin1tan1,c=logcos1sin1,d=logcos1tan1,則四個數(shù)的大小關(guān)系是( )
A.a<c<b<d
B.c<d<a<b
C.b<d<c<a
D.d<b<a<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個社會調(diào)查機構(gòu)就某地居民的月收入調(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如圖).為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10 000人中再用分層抽樣方法抽出80人作進一步調(diào)查,則在[1 500,2 000)(元)月收入段應(yīng)抽出( )人.
A.15
B.16
C.17
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義:在數(shù)列{an}中,若a ﹣a =p(n≥2,n∈N* , p為常數(shù)),則稱數(shù)列{an}為等方差數(shù)列,下列判斷:
①若{an}是“等方差數(shù)列”,則數(shù)列{an2}是等差數(shù)列;
②{(﹣1)n}是“等方差數(shù)列”;
③若{an}是“等方差數(shù)列”,則數(shù)列{akn}(k∈N* , k為常數(shù))不可能還是“等方差數(shù)列”;
④若{an}既是“等方差數(shù)列”,又是等差數(shù)列,則該數(shù)列是常數(shù)列.
其中正確的結(jié)論是 . (寫出所有正確結(jié)論的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,平面平面,四邊形為菱形,且, , ∥, 為中點.
(Ⅰ)求證: ∥平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在棱上是否存在點,使 ? 若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國內(nèi),某知名連接店分店開張營業(yè)期間,在固定的時間段內(nèi)消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎的有效展開,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前7天參加抽獎活動的人數(shù)進行統(tǒng)計, 表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
經(jīng)過進一步的統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(1)如從這7天中隨便機抽取兩天,求至少有1天參加抽獎人數(shù)超過10天的概率;
(2)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出與的線性回歸方程,并估計若該活動持續(xù)10天,共有多少名顧客參加抽獎.
參考公式: , , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球2個.從袋子中不放回地隨機抽取小球兩個,每次抽取一個球,記第一次取出的小球標號為,第二次取出的小球標號為.
(1)記事件表示“”,求事件的概率;
(2)在區(qū)間內(nèi)任取兩個實數(shù),,求“事件恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)任取,記“關(guān)于的方程有一個大于1的根和一個小于1的根”為事件,求發(fā)生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com