精英家教網 > 高中數學 > 題目詳情
(2009•浦東新區(qū)一模)條件甲:函數f(x)滿足f(x)+f(-x)=0,條件乙:函數f(x)是奇函數,則甲是乙的( 。
分析:利用奇函數的定義“函數y=f(x)的定義域為D,如果對D內的任意一個x,都有x∈D,且f(-x)=-f(x),則這個函數叫做奇函數”,針對于兩個條件分析得到結論.
解答:解:條件甲:函數f(x)滿足f(x)+f(-x)=0,
即f(-x)=-f(x)可以得到函數是一個奇函數
條件乙:函數f(x)是奇函數,一定要滿足f(x)+f(-x)=0,
∴條件甲是條件乙的充要條件,
故選C
點評:本題主要考查了函數奇偶性的判斷,以及必要條件、充分條件與充要條件的判斷,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2009•浦東新區(qū)一模)如圖:某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越短,鋪設管道的成本越低.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=10
3
米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數,并寫出定義域;
(2)若sinθ+cosθ=
3
+1
2
,求此時管道的長度L;
(3)問:當θ取何值時,鋪設管道的成本最低?并求出此時管道的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•浦東新區(qū)一模)已知數列{an}是等比數列,其前n項和為Sn,若S2=12,S3=a1-6,則
limn→∞
Sn
=
16
16

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•浦東新區(qū)一模)函數y=2sin2x的最小正周期為
π
π

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•浦東新區(qū)一模)對于函數f1(x),f2(x),h(x),如果存在實數a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數.
(1)下面給出兩組函數,h(x)是否分別為f1(x),f2(x)的生成函數?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)
;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數t的取值范圍.
(3)設f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數h(x)圖象的最低點坐標為(2,8).若對于任意正實數x1,x2且x1+x2=1,試問是否存在最大的常數m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•浦東新區(qū)二模)在△ABC中,A、B、C所對的邊分別為a、b、c已知a=2
3
 , c=2
,且
.
sinCsinB0
0b-2c
cosA01
.
=0
,求△ABC的面積.

查看答案和解析>>

同步練習冊答案