【題目】2019年某開發(fā)區(qū)一家汽車生產企業(yè)計劃引進一批新能源汽車制造設備,通過市場分析,全年需投入固定成本3000萬元,每生產x(百輛),需另投入成本萬元,且,由市場調研知,每輛車售價6萬元,且全年內生產的車輛當年能全部銷售完.

1)求出2019年的利潤(萬元)關于年產量x(百輛)的函數(shù)關系式;(利潤=銷售額成本)

22019年產量為多少(百輛)時,企業(yè)所獲利潤最大?并求出最大利潤.

【答案】1;(22019年年產量為100百輛時,企業(yè)所獲利潤最大,最大利潤為5800萬元.

【解析】

1)先閱讀題意,再分當時,當時,求函數(shù)解析式即可;

2)當時,利用配方法求二次函數(shù)的最大值,當時,利用均值不等式求函數(shù)的最大值,一定要注意取等的條件,再綜合求分段函數(shù)的最大值即可.

解:(1)由已知有當時,

時,,

2)當時,

時,取最大值

時,

當且僅當,即時取等號,

2019年年產量為100百輛時,企業(yè)所獲利潤最大,最大利潤為5800萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(1)證明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,均為等邊三角形,且平面平面,中點.

(Ⅰ)求證:平面;

(Ⅱ)若的面積為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)/(x.

(1)當時,求最小值;

(2)若存在單調遞減區(qū)間,求的取值范圍;

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年6月14日,第二十一屆世界杯尼球賽在俄羅斯拉開了帷幕,某大學在二年級作了問卷調查,從該校二年級學生中抽取了人進行調查,其中女生中對足球運動有興趣的占,而男生有人表示對足球運動沒有興趣.

(1)完成列聯(lián)表,并回答能否有的把握認為“對足球是否有興趣與性別有關”?

有興趣

沒有興趣

合計

合計

(2)若將頻率視為概率,現(xiàn)再從該校二年級全體學生中,采用隨機抽樣的方法每飲抽取名學生,抽取次,記被抽取的名學生中對足球有興趣的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列和數(shù)學期望.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)響應省政府號召,對現(xiàn)有設備進行改造,為了分析設備改造前后的效果,現(xiàn)從設備改造前后生產的大量產品中各抽取了件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內的產品視為合格品,否則為不合格品.如圖是設備改造前的樣本的頻率分布直方圖,表是設備改造后的樣本的頻數(shù)分布表.

表:設備改造后樣本的頻數(shù)分布表

質量指標值

頻數(shù)

(1)完成下面的列聯(lián)表,并判斷是否有的把握認為該企業(yè)生產的這種產品的質量指標值與設備改造有關;

設備改造前

設備改造后

合計

合格品

不合格品

合計

(2)根據(jù)頻率分布直方圖和表 提供的數(shù)據(jù),試從產品合格率的角度對改造前后設備的優(yōu)劣進行比較;

(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對合格品進行登記細分,質量指標值落在內的定為一等品,每件售價元;質量指標值落在內的定為二等品,每件售價元;其它的合格品定為三等品,每件售價.根據(jù)表的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率.現(xiàn)有一名顧客隨機購買兩件產品,設其支付的費用為(單位:元),求的分布列和數(shù)學期望.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程及曲線的直角坐標方程;

(2)若直線與曲線交于,兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為6的正方形中,弧的圓心為,過弧上的點作弧的切線,與分別相交于點、,的延長線交邊于點.

1)設,,求之間的函數(shù)解析式,并寫出函數(shù)定義域;

2)當時,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】足球,有“世界第一運動的美譽,是全球體育界最具影響力的單項體育運動之一.足球傳球是足球運動技術之一,是比賽中組織進攻、組織戰(zhàn)術配合和進行射門的主要手段.足球截球也是足球運動技術的一種,是將對方控制或傳出的球占為己有,或破壞對方對球的控制的技術,是比賽中由守轉攻的主要手段.這兩種運動技術都需要球運動員的正確判斷和選擇.現(xiàn)有甲、乙兩隊進行足球友誼賽,A、B兩名運動員是甲隊隊員,C是乙隊隊員,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.現(xiàn)A沿北偏西60°方向水平傳球,球速為10m/s,同時B沿北偏西30°方向以10m/s的速度前往接球,C同時也以10m/s的速度前去截球.假設球與B、C都在同一平面運動,且均保持勻速直線運動.

(1)若C沿南偏西60°方向前去截球,試判斷B能否接到球?請說明理由.

(2)若C改變(1)的方向前去截球,試判斷C能否球成功?請說明理由.

查看答案和解析>>

同步練習冊答案