如圖,△
中,
,
,
,在三角形內(nèi)挖去一個半圓(圓心
在邊
上,半圓與
、
分別相切于點
、
,與
交于點
),將△
繞直線
旋轉(zhuǎn)一周得到一個旋轉(zhuǎn)體。
(1)求該幾何體中間一個空心球的表面積的大;
(2)求圖中陰影部分繞直線
旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.
(1)
;(2)
.
試題分析:根據(jù)旋轉(zhuǎn)體的軸截面圖,利用平面幾何知識求得球的半徑與AC長,再利用面積公式與體積公式計算即可
試題解析:(1)連接
,則
設(shè)
,則
,
在
中,
所以
所以
(2)
中,
,
,
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,一個圓錐形的空杯子上面放著一個半球形的冰淇淋,如果冰淇淋融化了并流入杯中,會溢出杯子嗎?請用你的計算數(shù)據(jù)說明理由。(冰、水的體積差異忽略不計)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=
,AD=1.
(I)求證:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,PA丄平面ABCD,
=
=90°
=120
0,AD=AB=1,AC交BD于 O 點.
(I)求證:平面PBD丄平面PAC;
(Ⅱ)求三棱錐D-ABP和三棱錐B-PCD的體積之比.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,將邊長為5+
的正方形,剪去陰影部分后,得到圓錐的側(cè)面和底面的展開圖,則圓錐的體積是( ).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
.正三棱錐的底邊長和高都是2,則此正三棱錐的斜高長度為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如果圓錐的側(cè)面展開圖是半圓,那么這個圓錐的頂角(經(jīng)過圓錐旋轉(zhuǎn)軸的截面中兩條母線的夾角)是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
一個棱長為6的正四面體紙盒內(nèi)放一個正方體,若正方體可以在紙盒內(nèi)任意轉(zhuǎn)動,則正方體棱長的最大值為( )
A.2 | B.3 | C. | D. |
查看答案和解析>>