分析 (I)由題意可知兩圓半徑相等,圓心關(guān)于直線y=x對(duì)稱,從而得出圓C的圓心坐標(biāo),得出圓C的方程;
(II)利用垂徑定理得出圓心C到直線l的距離,再利用點(diǎn)到直線的距離公式計(jì)算k,得出直線l的方程.
解答 解:(I)設(shè)圓C的圓心為C(a,b),半徑為r,
則C(x,y)與D(1,-2)關(guān)于直線y=x對(duì)稱,且r=2,
∴C(-2,1),
∴圓C的方程為(x+2)2+(y-1)2=4.
(II)∵圓C的半徑為r=2,|AB|=2$\sqrt{3}$,
∴圓C的圓心C(-2,1)到直線l的距離d=$\sqrt{{r}^{2}-(\frac{AB}{2})^{2}}$=1,
即$\frac{|-2k-1+1|}{\sqrt{{k}^{2}+1}}$=1,解得k=±$\frac{\sqrt{3}}{3}$,
∴直線l的方程為:y=$\frac{\sqrt{3}}{3}$x+1或y=-$\frac{\sqrt{3}}{3}$x+1.
點(diǎn)評(píng) 本題考查了圓的方程,直線與圓的位置關(guān)系,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [4,8) | B. | (1,+∞) | C. | (4,8) | D. | (1,8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
ξ | 1 | 2 | 3 |
P | a | b | c |
A. | 0 | B. | 1 | ||
C. | 2 | D. | 無法確定,與a,b有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | $2+\sqrt{5}$ | D. | $3+\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | |x-y|<2t | B. | |x-y|<t | C. | |x-y|>2t | D. | |x-y|>t |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com