已知函數(shù)同時(shí)滿足:①不等式 的解集有且只有一個(gè)元素;②在定義域內(nèi)存在,使得不等式成立 設(shè)數(shù)列的前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個(gè)數(shù)稱為這個(gè)數(shù)列的變號數(shù),令(為正整數(shù)),求數(shù)列的變號數(shù)
(1);(2)3
解析試題分析:(1)由一元二次不等式的解集有且只有一個(gè)元素可判斷對應(yīng)方程的判別式等于零,再根據(jù)單調(diào)性確定參數(shù)的值,然后求數(shù)列的通項(xiàng)公式;(2)根據(jù)新定義,代入解不等式即可,需要注意的特殊性
試題解析:(1)由①的解集有且只有一個(gè)元素知
或 4分
當(dāng)時(shí),函數(shù)在上遞增,此時(shí)不滿足條件② 6分
綜上可知
8分
(2)由條件可知
當(dāng)時(shí),令或
所以或 13分
又時(shí),也有 15分
綜上可得數(shù)列的變號數(shù)為3 16分
考點(diǎn):二次函數(shù),數(shù)列
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}(n∈N﹡)中,a1=0,當(dāng)3an<n2時(shí),an+1=n2,當(dāng)3an>n2時(shí),an+1=3an.求a2,a3,a4,a5,猜測數(shù)列的通項(xiàng)an并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列,,,.
(1)求證:為等比數(shù)列,并求出通項(xiàng)公式;
(2)記數(shù)列 的前項(xiàng)和為且,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是等差數(shù)列,且,;又若是各項(xiàng)為正數(shù)的等比數(shù)列,且滿足,其前項(xiàng)和為,.
(1)分別求數(shù)列,的通項(xiàng)公式,;
(2)設(shè)數(shù)列的前項(xiàng)和為,求的表達(dá)式,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項(xiàng)數(shù)列的前項(xiàng)和為,是與的等比中項(xiàng).
(1)求證:數(shù)列是等差數(shù)列;
(2)若,且,求數(shù)列的通項(xiàng)公式;
(3)在(2)的條件下,若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意的,滿足關(guān)系式
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,求證:對于任意的正整數(shù),總有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,前和
(Ⅰ)求證:數(shù)列是等差數(shù)列; (Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)設(shè)數(shù)列的前項(xiàng)和為,是否存在實(shí)數(shù),使得對一切正整數(shù)都成立?若存在,求的最小值,若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列和公比為的等比數(shù)列滿足:,,.
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)若數(shù)列的前項(xiàng)和為,且對任意均有成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
( 1 ) 證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com