【題目】歷史上有不少數(shù)學家都對圓周率作過研究,第一個用科學方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方法,而中國數(shù)學家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分數(shù)、無窮級數(shù)等各種值的表達式紛紛出現(xiàn),使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是

A.B.C.D.

【答案】B

【解析】

初始:,,第一次循環(huán):,,繼續(xù)循環(huán);

第二次循環(huán):,,此時,滿足條件,結(jié)束循環(huán),

所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C方程為,橢圓中心在原點,焦點在x軸上.

1)證明圓C恒過一定點M,并求此定點M的坐標;

2)判斷直線與圓C的位置關(guān)系,并證明你的結(jié)論;

3)當時,圓C與橢圓的左準線相切,且橢圓過(1)中的點M,求此時橢圓方程;在x軸上是否存在兩定點AB使得對橢圓上任意一點Q(異于長軸端點),直線,的斜率之積為定值?若存在,求出AB坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在上任意一點處的切線,若過右焦點的直線交橢圓兩點,已知在點處切線相交于.

(Ⅰ)求點的軌跡方程;

(Ⅱ)①若過點且與直線垂直的直線(斜率存在且不為零)交橢圓兩點,證明為定值.

②四邊形的面積是否有最小值,若有請求出最小值;若沒有請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)質(zhì)量檢驗員為了檢測生產(chǎn)線上零件的情況,從生產(chǎn)線上隨機抽取了個零件進行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:

1)根據(jù)頻率分布直方圖,求這個零件尺寸的中位數(shù)(結(jié)果精確到);

2)已知尺寸在上的零件為一等品,否則為二等品. 將這個零件尺寸的樣本頻率視為概率,從生產(chǎn)線上隨機抽取個零件,試估計所抽取的零件是二等品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,直線將矩形紙分為兩個直角梯形,將梯形沿邊翻折,如圖2,在翻折的過程中(平面和平面不重合),下面說法正確的是

圖1 圖2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的過程中,平面恒成立

D.在翻折的過程中,平面恒成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓E1(a>b>0)的左、右焦點分別為F1,F2,過點F1的直線交橢圓EA,B兩點.若橢圓E的離心率為,三角形ABF2的周長為4.

1)求橢圓E的方程;

2)設(shè)不經(jīng)過橢圓的中心而平行于弦AB的直線交橢圓E于點C,D,設(shè)弦AB,CD的中點分別為M,N,證明:O,M,N三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx3,gx)=alnx2xaR.

1)討論gx)的單調(diào)性;

2)是否存在實數(shù)a,使不等式fxgx)恒成立?如果存在,求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年寒假是特殊的寒假,因為疫情全體學生只能在家進行網(wǎng)上在線學習,為研究學生網(wǎng)上學習的情況,某校社團對男女各10名學生進行了網(wǎng)上在線學習的問卷調(diào)查,每名學生給出評分(滿分100分),得到如圖所示的莖葉圖.

1)根據(jù)莖葉圖判斷男生組和女生組哪個組對網(wǎng)課的評價更高?并說明理由;

2)如圖是按該20名學生的評分繪制的頻率分布直方圖,求的值并估計這20名學生評分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間中點值作為代表);

3)求該20名學生評分的中位數(shù),并將評分超過和不超過的學生數(shù)填入下面的列聯(lián)表:

超過

不超過

男生

女生

根據(jù)列聯(lián)表,能否有的把握認為男生和女生的評分有差異?

附:,

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,設(shè)內(nèi)角,的對邊分別為,,,且.

1)若,,成等比數(shù)列,求證:;

2)若為銳角),.邊上的高.

查看答案和解析>>

同步練習冊答案