15.$\overrightarrow{OA}$=(1,1)在$\overrightarrow{OB}$=(4,3)上的投影為(  )
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{1}{3}$D.$\frac{7}{5}$

分析 根據(jù)題意,由向量$\overrightarrow{OA}$、$\overrightarrow{OB}$的坐標(biāo),計(jì)算可得$\overrightarrow{OA}$•$\overrightarrow{OB}$以及|$\overrightarrow{OB}$|的值,進(jìn)而由向量數(shù)量積的計(jì)算公式計(jì)算可得答案.

解答 解:根據(jù)題意,$\overrightarrow{OA}$=(1,1),$\overrightarrow{OB}$=(4,3),
則$\overrightarrow{OA}$•$\overrightarrow{OB}$=1×4+1×3=7,|$\overrightarrow{OB}$|=$\sqrt{{4}^{2}+{3}^{2}}$=5,
則$\overrightarrow{OA}$=(1,1)在$\overrightarrow{OB}$=(4,3)上的投影$\frac{\overrightarrow{OA}•\overrightarrow{OB}}{|\overrightarrow{OB}|}$=$\frac{7}{5}$;
故選:D.

點(diǎn)評(píng) 本題考查向量數(shù)量積的坐標(biāo)計(jì)算,關(guān)鍵是掌握向量數(shù)量積的計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2x-1,則不等式f(x)+7<0的解集為(-∞,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某初級(jí)中學(xué)籃球隊(duì)假期集訓(xùn),集訓(xùn)前共有8個(gè)籃球,其中4個(gè)是新的(即沒(méi)有用過(guò)的球),4個(gè)是舊的(即至少用過(guò)一次的球),毎次訓(xùn)練都從中任意取出2個(gè)球,用完后放回,則第二次訓(xùn)練時(shí)恰好取到1個(gè)新球的概率為( 。
A.$\frac{24}{49}$B.$\frac{4}{7}$C.$\frac{25}{49}$D.$\frac{51}{98}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若函數(shù)f(x)=$\frac{2-ax}{3x+5}$的值域?yàn)椋?∞,1)∪(1,+∞),則a的值=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)設(shè)函數(shù)$f(x)=\frac{sinθ}{3}{x^3}+\frac{{\sqrt{3}cosθ}}{2}{x^2}+tanθ$,其中$θ∈[{0,\frac{5}{12}π}]$,求導(dǎo)數(shù)f′(1)的取值范圍;
(2)若曲線y=ax2(a>0)與曲線y=lnx在它們的公共點(diǎn)P(s,t)處具有公共切線,求公共切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-2≥0}\end{array}}\right.$若z=mx+y取得最大值時(shí)的最優(yōu)解有無(wú)窮多個(gè),則實(shí)數(shù)m的值是( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.五位同學(xué)按下列要求站一橫排,分別有多少種不同的站法?
(1)甲乙必須相鄰
(2)甲乙不相鄰
(3)甲不站中間,乙不站兩端
(4)甲,乙均在丙的同側(cè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{1}{2}$,左、右焦點(diǎn)分別為圓F1、F2,M是C上一點(diǎn),|MF1|=2,且|$\overrightarrow{M{F}_{1}}$||$\overrightarrow{M{F}_{2}}$|=2$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}$.
(1)求橢圓C的方程;
(2)當(dāng)過(guò)點(diǎn)P(4,1)的動(dòng)直線l與橢圓C相交于不同兩點(diǎn)A、B時(shí),線段AB上取點(diǎn)Q,且Q滿足|$\overrightarrow{AP}$||$\overrightarrow{QB}$|=|$\overrightarrow{AQ}$||$\overrightarrow{PB}$|,證明點(diǎn)Q總在某定直線上,并求出該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=Sn-1+2an-1+1,(n≥2,n∈N*),且a1=3.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}={log_2}(\frac{1}{{{a_n}+1}})$,求證:$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案