已知正方形ABCD,AB=2,AC、BD交點(diǎn)為O,在ABCD內(nèi)隨機(jī)取一點(diǎn)E,則點(diǎn)E滿足OE<1的概率為( 。
A、
π
4
B、
1
4
C、
π
8
D、
1
2
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:由圓的面積公式,結(jié)合題意算出滿足條件的點(diǎn)E對(duì)應(yīng)的圖形的面積,求出正方體ABCD的面積并利用幾何概型計(jì)算公式,即可算出所求概率.
解答: 解:當(dāng)點(diǎn)E滿足OE<1時(shí),E在以O(shè)為圓心、半徑為1的圓內(nèi)
其面積為S′=π×12=π,
∵正方形ABCD邊長為2,得正方形的面積為S=22=4
∴所求概率為P=
S′
S
=
π
4

故選:A
點(diǎn)評(píng):本題在正方形中求點(diǎn)E滿足條件的概率,著重考查了圓的面積、正方形面積計(jì)算公式和幾何概型計(jì)算公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面xoy中,不等式x2+y2≤4確定的平面區(qū)域?yàn)閁,不等式組
x-y≥0
x+y≥0
確定的平面區(qū)域?yàn)閂.
(Ⅰ)定義橫、縱坐標(biāo)為整數(shù)的點(diǎn)為“整點(diǎn)”,在區(qū)域U中任取3個(gè)“整點(diǎn)”,求這些“整點(diǎn)”恰好有兩個(gè)“整點(diǎn)”落在區(qū)域V中的概率;
(Ⅱ)在區(qū)域U中每次任取一個(gè)點(diǎn),若所取的點(diǎn)落在區(qū)域V中,稱試驗(yàn)成功,否則稱試驗(yàn)失。F(xiàn)進(jìn)行取點(diǎn)試驗(yàn),到成功了4次為止,求在此之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)a、b、c、d滿足(b+a2-3lna)2+(c-d+2)2=0,則(a-c)2+(b-d)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三個(gè)正數(shù)a,b,c,滿足b<a+c≤2b,a<b+c≤2a,則
a
b
的取值范圍是( 。
A、(
2
3
,
3
2
B、(
1
3
2
3
C、(0,
3
2
D、(
2
3
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U是實(shí)數(shù)集R,集合M={x|x2>2x},N={x|log2(x-1)≤0},則(∁UM)∩N為( 。
A、{x|1<x<2}
B、{x|1≤x≤2}
C、{x|1<x≤2}
D、{x|1≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC外接圓半徑等于1,其圓心O滿足
AO
=
1
2
(
AB
+
AC
),|
AO
|=|
AC
|
,則向量
BA
BC
方向上的投影等于( 。
A、-
3
2
B、
3
2
C、
3
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈N|0<x<3},B={x|2x-1>1},則A∩B=( 。
A、∅B、{1}
C、{2}D、{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:x2-
y2
2
=1
,過點(diǎn)P(-1,-2)的直線交C于A,B兩點(diǎn),且點(diǎn)P為線段AB的中點(diǎn).
(1)求直線AB的方程;
(2)求弦長|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M的中心原點(diǎn)O,點(diǎn)F(-1,0)是它的一個(gè)焦點(diǎn),直線L過點(diǎn)F與橢圓M交于P、Q兩點(diǎn),當(dāng)直線L的斜率不存在時(shí),
OP
OQ
=
1
2

(1)求橢圓M的方程;
(2)設(shè)A、B、C是橢圓M上的不同三點(diǎn),且
OA
+
OB
+
OC
=0
,證明直線AB與OC的斜率之積為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案