在f(m,n)中,m,n,f(m,n)∈N*,且對任何m,n都有:(1)f(1,1)=1;(2)f(m,n+1)=f(m,n)+2;(3)f(m+1,1)=2f(m,1),給出以下三個結論:①f(1,5)=9;②f(5,1)=16;③f(5,6)=26其中正確的個數(shù)為    個.
【答案】分析:由已知中對任意m、n∈N*都有:①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).我們易推斷出,f(n,1)=2n-1,f(n,1)=2n-1,f(m,n+1)=2m-1+2n,進而判斷已知中三個結論,即可得到答案.
解答:解:∵f(m,n+1)=f(m,n)+2
∴f(1,n)=2n-1
故(1)f(1,5)=9正確;
又∵f(m+1,1)=2f(m,1)
∴f(n,1)=2n-1
∴(2)f(5,1)=16也正確;
則f(m,n+1)=2m-1+2n
∴(3)f(5,6)=26也正確
故答案為:3.
點評:本題考查的知識點是抽象函數(shù)及其應用,其中根據已知條件推斷出:f(n,1)=2n-1,f(n,1)=2n-1,f(m,n+1)=2m-1+2n,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在f(m,n)中,m,n,f(m,n)∈N+,且對任何m、n都有:(Ⅰ)f(1,1)=1,(Ⅱ)f(m,n+1)=f(m,n)+2,(Ⅲ)f(m+1,1)=2f(m,1).
給出下列四個結論:
①f(1,5)=9; ②f(5,1)=16;
③f(5,6)=26;④f(5,3)=20.
其中正確的結論是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在f(m,n)中,m、n、f(m,n)∈N*,且對任何m,n都有:
(i)f(1,1)=1;
(ii)f(m,n+1)=f(m,n)+3;
(iii)f(m+1,1)=2f(m,1),給出以下三個結論:
(1)f(1,5)=13;(2)f(5,1)=16;(3)f(5,6)=26
其中正確的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在f(m,n)中,m,n,f(m,n)∈N*,且對任何m,n都有:
(Ⅰ)f(1,1)=1,
(Ⅱ)f(m,n+1)=f(m,n)+2,
(Ⅲ)f(m+1,1)=2f(m,1).
給出下列三個結論:
①f(1,5)=9;  ②f(5,1)=16;   ③f(5,6)=26.
其中正確的結論個數(shù)是(  )個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在f(m,n)中,m,n,f(m,n)∈N*,且對任何m,n都有:(1)f(1,1)=1;(2)f(m,n+1)=f(m,n)+2;(3)f(m+1,1)=2f(m,1),給出以下三個結論:①f(1,5)=9;②f(5,1)=16;③f(5,6)=26其中正確的個數(shù)為
3
3
個.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年重慶八中高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:選擇題

在f(m,n)中,m,n,f(m,n)∈N*,且對任何m,n都有:
(Ⅰ)f(1,1)=1,
(Ⅱ)f(m,n+1)=f(m,n)+2,
(Ⅲ)f(m+1,1)=2f(m,1).
給出下列三個結論:
①f(1,5)=9;  ②f(5,1)=16;   ③f(5,6)=26.
其中正確的結論個數(shù)是( )個.
A.3
B.2
C.1
D.0

查看答案和解析>>

同步練習冊答案