任意一個三位數(shù),百位數(shù)與個位數(shù)相加等于十位數(shù),求證:該三位數(shù)能被11整除.
考點:整除的基本性質(zhì)
專題:證明題
分析:不妨設(shè)這個三位數(shù)為xyz,結(jié)合已知可得x+z=y,除以11后,可得結(jié)論.
解答: 證明:設(shè)這個三位數(shù)A的三個數(shù)位上數(shù)依次為xyz,
則x+z=y,
則A=100x+10y+z=100x+10(x+z)+z=110x+11z,
則A÷11=10x+z,
即該三位數(shù)能被11整除.
點評:此題考查了數(shù)的整除特征,明確能被11整除的數(shù)的特征:即該數(shù)的奇數(shù)位和與偶數(shù)位和之間的差是11的倍數(shù),是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校安排三位教師任教高三(1)~(6)共6個班級的數(shù)學(xué)課,每人任教兩個班級,其中教師甲不排(1)班,乙不排(2)班,則不同的排法共有
 
種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-a)2+(y-2)2=4(a>0)及直線l:x-y+3=0.當(dāng)直線l被圓C截得的弦長為2
2
時,則a的值為( 。
A、1B、1或3
C、-3D、1或-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項式(2x2-
1
3x
6的展開式中第4項的系數(shù)是( 。
A、20B、60
C、-160D、160

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2+bx(a>0)
且f′(1)=0
(1)試用含有a的式子表示b;
(2)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)對于曲線上的不同兩點P1(x1,y1),P2(x2,y2),如果存在曲線上的點Q(x0,y0)且x1<x0<x2,使得曲線在點Q處的切線l∥P1P2,則稱P1P2存在“陪伴切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱P1P2存在“中值陪伴切線”.試問:在函數(shù)f(x)上是否存在兩點P1,P2使得它存在“中值陪伴切線”?若存在,求出P1,P2的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-a)2ex在x=2時取得極小值.
(1)求實數(shù)a的值;
(2)是否存在區(qū)間[m,n],使得f(x)在該區(qū)間上的值域為[e4m,e4n]?若存在,求出m,n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

電視傳媒為了解某市100萬觀眾對足球節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾每周平均收看足球節(jié)目時間的頻率分布直方圖,將每周平均收看足球節(jié)目時間不低于1.5小時的觀眾稱為“足球迷”,并將其中每周平均收看足球節(jié)目時間不低于2.5小時的觀眾稱為“鐵桿足球迷”.
(1)試估算該市“足球迷”的人數(shù),并指出其中“鐵桿足球迷”約為多少人;
(2)該市要舉辦一場足球比賽,已知該市的足球場可容納10萬名觀眾.根據(jù)調(diào)查,如果票價定為100元/張,則非“足球迷”均不會到現(xiàn)場觀看,而“足球迷”均愿意前往現(xiàn)場觀看.如果票價提高10x元/張(x∈N),則“足球迷”中非“鐵桿足球迷”愿意前往觀看的人數(shù)會減少10x%,“鐵桿足球迷”愿意前往觀看的人數(shù)會減少
100x
x+11
%.問票價至少定為多少元/張時,才能使前往現(xiàn)場觀看足球比賽的人數(shù)不超過10萬人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)P1,P2,…,P6為單位圓上逆時針均勻分布的六個點.現(xiàn)從這六個點中任選其中三個不同點構(gòu)成一個三角形,記該三角形的面積為隨機變量S.
(1)求S=
3
2
的概率;
(2)求S的分布列及數(shù)學(xué)期望E(S).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為D,若它的值域是D的子集,則稱f(x)在D上封閉.
(Ⅰ)試判斷f(x)=2x,g(x)=log2x是否在(1,+∞)上封閉;
(Ⅱ)設(shè)f1(x)=f(x),fn(x)=f(fn-1(x))(n∈N*,n≥2),若fn(x)(n∈N*)的定義域均為D,求證:fn(x)在D上封閉的充分必要條件是f1(x)在D上封閉;
(Ⅲ)若a>0,求證:h(x)=
2
2
(|xsinx|+|xcosx|)在[0,a]上封閉,并指出值域為[0,a]時a的值.

查看答案和解析>>

同步練習(xí)冊答案