如圖,已知ABCD是正方形,PD⊥平面ABCD,PD=
3
AD
,設點E是棱PB上的動點(不含端點),過點A,D,E的平面交棱PC于點F.
(1)求證:BC∥EF;
(2)求二面角A-PB-D的余弦值.
考點:二面角的平面角及求法,直線與平面平行的性質
專題:空間位置關系與距離,空間角
分析:(1)根據(jù)線面平行的性質定理,證明BC∥平面AEFD,即可證明BC∥EF;
(2)根據(jù)二面角平面角的定義,確定平面角,然后根據(jù)三角形的邊角關系,即可求二面角A-PB-D的余弦值.
解答: 證明:(1)∵BC∥AD,
∴BC∥平面AEFD.
又∵BC?平面BCP,EF為平面ADE與平面BCP的交線,
∴BC∥EF.
(2)連結AC交BD于O,則AO⊥BD,AO⊥PD.
∴AO⊥平面PDB.作AM⊥PB于M,連結OM.
則∠AMO為二面角APBD的平面角.
設AD=1,則PD=
3
,PA=2.
AM=
PA•AB
PB
=
2
5
=
2
5
5
,AO=
2
2

∴sin∠AMO=
A0
AM
=
10
4

cos∠AMO=
1-(
10
4
)2
=
6
4
點評:本題主要考查空間直線平行的判斷,以及空間二面角的大小求法,考查學生的運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

把函數(shù)y=cosx的圖象向左平移
π
4
個單位,然后把,圖象上的所有點的橫坐標縮小到原來的
1
2
(縱坐標不變),則所得圖形對應的函數(shù)解析式為(  )
A、y=cos(
1
2
x+
π
4
B、y=cos(2x+
π
4
C、y=cos(
1
2
x+
π
8
D、y=cos(2x+
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示是《函數(shù)的應用》的知識結構圖,如果要加入“用二分法求方程的近似解”,則應該放在( 。
A、“函數(shù)與方程”的上位
B、“函數(shù)與方程”的下位
C、“函數(shù)模型及其應用”的上位
D、“函數(shù)模型及其應用”的下位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

力綜合治理交通擁堵狀況,緩解機動車過快增長勢頭,一些大城市出臺了“機動車搖號上牌”的新規(guī).某大城市2014年初機動車的保有量為600萬輛,預計此后每年將報廢本年度機動車保有量的5%,且報廢后機動車的牌照不再使用,同時每年投放10萬輛的機動車牌號,只有搖號獲得指標的機動車才能上牌,經調研,獲得搖號指標的市民通常都會在當年購買機動車上牌.
(Ⅰ)問:到2018年初,該城市的機動車保有量為多少萬輛;
(Ⅱ)根據(jù)該城市交通建設規(guī)劃要求,預計機動車的保有量少于500萬輛時,該城市交通擁堵狀況才真正得到緩解.問:至少需要多少年可以實現(xiàn)這一目標.(參考數(shù)據(jù):0.954=0.81,0.955=0.77,lg0.75=-0.13,lg0.95=-0.02)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=4,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥平面PAB;
(2)求異面直線PC與AD所成的角的大;
(3)求二面角P-BD-A的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l:y=kx+
2
與雙曲線
x2
3
-y2=1恒有兩個不同的交點A和B,且
OA
OB
>2(其中O為原點),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6}求:(1)B∩C;(2)A∩∁A(B∪C)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=BC,∠PBC=90°,D為AC的中點,AB⊥PD.
(1)求證:平面PAB⊥平面ABC;
(2)求二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log 
1
a
[(a-1)x-2].
(1)若a>1,求f(x)的定義域;
(2)若f(x)>0在[1,
5
4
]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案