ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.
已知.
(Ⅰ)求的值;  (Ⅱ)若,求ABC的面積.

(1)(2)

解析試題分析:(1)的值,所以將式子中變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/e3/7/18epp3.png" style="vertical-align:middle;" />,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/be/0/xol6z.png" style="vertical-align:middle;" />,所以,將代入就能求出的值.(2)利用第一問(wèn)=求得再利用正弦定理求出C邊為,在由余弦定理cosA=.求出b邊為.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b6/b/snfo6.png" style="vertical-align:middle;" />可以求出所以.利用三角形面積公式可以得出
試題解析:(Ⅰ∵cosA=>0,∴sinA=,
cosC=sinB=sin(A+C)=sinAcosC+sinCcosA=cosC+sinC.
整理得:tanC=.                  6分
(Ⅱ)由(Ⅰ)知 sinC=
又由正弦定理知:,故. (1)
由余弦定理得:cosA=. (2)
解(1) (2)得: or  b=(舍去).∴ABC的面積為:S=.    12分
考點(diǎn):解三角形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,兩座建筑物的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是9和15,從建筑物的頂部看建筑物的視角.

⑴求的長(zhǎng)度;
⑵在線段上取一點(diǎn)點(diǎn)與點(diǎn)不重合),從點(diǎn)看這兩座建筑物的視角分別為問(wèn)點(diǎn)在何處時(shí),最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為常數(shù)).
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)若時(shí),的最小值為 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,角、所對(duì)的邊分別為、,,.
(1)求角的大。
(2)若,求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),求
(1)函數(shù)的最小值及此時(shí)的的集合.
(2)函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,角所對(duì)的邊為,且滿足
(1)求角的值;
(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量(), ,且的周期為
(1)求f()的值;
(2)寫出f(x)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,,且
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)三角形ABC中,邊分別為角的對(duì)邊,若,B=,且, 求三角形ABC的邊的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,且.
(1)求;
(2)求.

查看答案和解析>>

同步練習(xí)冊(cè)答案