已知雙曲線(a>0,b>0)的左右焦點是F1,F(xiàn)2,設P是雙曲線右支上一點,上的投影的大小恰好為且它們的夾角為,則雙曲線的離心率e為( )
A.
B.
C.
D.
【答案】分析:先根據(jù)上的投影的大小恰好為判斷兩向量互相垂直得到直角三角形,進而根據(jù)直角三角形中內(nèi)角為,結合雙曲線的定義建立等式求得a和c的關系式,最后根據(jù)離心率公式求得離心率e.
解答:解:∵上的投影的大小恰好為
∴PF1⊥PF2
且它們的夾角為,∴,
∴在直角三角形PF1F2中,F(xiàn)1F2=2c,
∴PF2=c,PF1=
又根據(jù)雙曲線的定義得:PF1-PF2=2a,
c-c=2a

e=
故選C.
點評:本題主要考查了雙曲線的簡單性質.考查了學生綜合分析問題和運算的能力.解答關鍵是通過解三角形求得a,c的關系從而求出離心率.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線-=1(a>0,b>0)的右焦點為F,右準線與一條漸近線交于點A,△OAF的面積為(O為原點),則兩條漸近線的夾角為(    )

A.30°             B.45°              C.60°               D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線=1(a>0,b>0)的右焦點為F,右準線與一條漸近線交于點A,△OAF的面積為(O為原點),則兩條漸近線的夾角為(    )

A.30°                B.45°                   C.60°                  D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練24練習卷(解析版) 題型:選擇題

已知雙曲線-=1(a>0,b>0)的一條漸近線方程是y=x,它的一個焦點在拋物線y2=24x的準線上,則雙曲線的方程為(  )

(A) -=1 (B) -=1

(C) -=1 (D) -=1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省高三聯(lián)合考試數(shù)學文卷 題型:填空題

已知雙曲線a>0,b>0)的左右焦點分別為F1、 F2 ,P 是雙曲線上的一點,且P F1⊥P F2, 的面積為2 ab,則雙曲線的離心率 e=________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆吉林省高二上學期期末考試理科數(shù)學 題型:選擇題

已知雙曲線(a>0,b>0)的兩條漸近線均和圓C:x2+y2-6x+5=0相切,且雙曲線的右焦點為圓C的圓心,則該雙曲線的方程為(    )

(A)    (B)     (C) (D)

 

查看答案和解析>>

同步練習冊答案