定義在R上的函數(shù)數(shù)學(xué)公式.對任意正實(shí)數(shù)ξ,有f(x+ξ)<f(x)成立.當(dāng)滿足不等式-6<f(x-t)<2的x的取值范圍是-4<x<4時(shí),實(shí)數(shù)t的值為________.

2
分析:對任意正實(shí)數(shù)ξ,有f(x+ξ)<f(x)成立,可得函數(shù)為R上的單調(diào)減函數(shù),利用函數(shù)的解析式可得不等式-6<f(x-t)<2等價(jià)于不等式f(2)<f(x-t)<f(-6),從而化抽象不等式為具體不等式,由此可求t的值.
解答:∵對任意正實(shí)數(shù)ξ,有f(x+ξ)<f(x)成立
∴函數(shù)為R上的單調(diào)減函數(shù)
令ax-2-7=-6,則x=2;令ax+6+1=2,則x=-6
∴不等式-6<f(x-t)<2等價(jià)于不等式f(2)<f(x-t)<f(-6)
∵函數(shù)為R上的單調(diào)減函數(shù)
∴2>x-t>-6
∴t-6<x<t+2
∵不等式-6<f(x-t)<2的x的取值范圍是-4<x<4
∴t=2
故答案為:2
點(diǎn)評:本題考查函數(shù)的單調(diào)性,考查解不等式,確定函數(shù)的單調(diào)性是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的函數(shù),對m,n∈R恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1.
(1)求證:f(0)=1;
(2)求證:當(dāng)x∈R時(shí),恒有f(x)>0;
(3)求證:f(x)在R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的函數(shù),對任意x,y∈R,恒有f(x+y)=f(x)•f(y),當(dāng)x>0時(shí),有0<f(x)<1.
(1) 求證:f(0)=1,且當(dāng)x<0時(shí),f(x)>1;
(2) 證明:f(x)在R上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在R上的函數(shù),對任意的實(shí)數(shù)x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2,且f(1)=0,則f(2009)的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在R上的函數(shù),對任意的實(shí)數(shù)x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2,且f(1)=0,則f(2013)的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù),對任意x1,x2∈R,都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
,則稱函數(shù)f(x)是R上的凸函數(shù).已知二次函數(shù)f(x)=ax2+x(a∈R,a≠0).
(1)求證:當(dāng)a<0時(shí),函數(shù)f(x)是凸函數(shù);
(2)對任意x∈(0,1],f(x)≥-1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案