1.如圖所示,是一個空間幾何體的三視圖,且這個空間幾何體的所有頂點都在同一個球面上,則這個球的體積是( 。
A.$\frac{49}{9}π$B.$\frac{{28\sqrt{21}}}{27}π$C.$\frac{28}{3}π$D.$\frac{{28\sqrt{7}}}{9}π$

分析 由三視圖知,幾何體是一個三棱柱,三棱柱的底面是邊長為2的正三角形,側(cè)棱長是2,根據(jù)三棱柱的兩個底面的中心的中點與三棱柱的頂點的連線就是外接球的半徑,求出半徑即可求出球的體積.

解答 解:由三視圖知,幾何體是一個三棱柱,三棱柱的底面是邊長為2的正三角形,側(cè)棱長是2,
三棱柱的兩個底面的中心的中點與三棱柱的頂點的連線就是外接球的半徑,
r=$\sqrt{(\frac{2}{3}×\sqrt{3})^{2}+{1}^{2}}$=$\sqrt{\frac{7}{3}}$,球的體積$\frac{4}{3}$πr3=$\frac{28\sqrt{21}}{27}$π.
故選:B.

點評 本題考查了由三視圖求三棱柱的外接球的體積,利用棱柱的幾何特征求外接球的半徑是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.曲線y=$\frac{1}{3}$x3-2在點(1,-$\frac{5}{3}$)處切線的斜率是( 。
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ex+$\frac{{x}^{2}}{2}$+ln(x+m)+n在點(0,f(0))處的切線方程為(e+1)x-ey+3e=0.
(1)求f(x)的解析式;
(2)若當x≥0時,f(x)≥$\frac{{x}^{2}}{2}$+ax+3成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在△ABC中,角A,B,C的對邊分別為a,b,c,bcos2$\frac{A}{2}$+acos2$\frac{B}{2}$=$\frac{3}{2}$c.
(1)求證:a,c,b成等差數(shù)列;
(2)若C=$\frac{π}{3}$,△ABC的面積為2$\sqrt{3}$,求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.關(guān)于函數(shù)f (x)=4sin(2x+$\frac{π}{3}$),(x∈R)有下列命題:
①y=f(x)是以2π為最小正周期的周期函數(shù);
②y=f(x)的圖象關(guān)于點(-$\frac{π}{6}$,0)對稱;
③y=f(x)的圖象關(guān)于直線x=-$\frac{5π}{12}$對稱;
其中正確的序號為③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知f(x)=|x+1|+|x-2|
(Ⅰ)已知關(guān)于x的不等式f(x)<2a-1有實數(shù)解,求實數(shù)a的取值范圍;
(Ⅱ)解不等式f(x)≥x2-2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知雙曲線C的焦點、實軸端點恰好分別是橢圓$\frac{x^2}{16}+\frac{y^2}{7}=1$的長軸端點、焦點,則雙曲線C的漸近線方程是$y=±\frac{{\sqrt{7}}}{3}x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.將函數(shù)g(x)=sinx的圖象縱坐標伸長為原來的2倍(橫坐標不變),再將橫坐標縮短為原來的$\frac{1}{2}$倍(縱坐標不變),最后把得到的函數(shù)圖象向左平移$\frac{π}{8}$個單位得到函數(shù)y=f(x)的圖象.
(Ⅰ)寫出函數(shù)y=f(x)的解析式;
(Ⅱ)用五點法作出函數(shù)y=f(x)($x∈[-\frac{π}{8},\frac{7π}{8}]$)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設(shè)定義在R上的偶函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞減,若f(1-m)<f(m),則實數(shù)m的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

同步練習冊答案