已知函數(shù)f(x)的定義域為[0,1],且同時滿足:①對于任意x∈[0,1],總有f(x)≥3;②f(1)=4;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-3.
(I)求f(0)的值;
(II)求函數(shù)f(x)的最大值;
(III)設(shè)數(shù)列數(shù)學(xué)公式,求證:數(shù)學(xué)公式

(Ⅰ) 解:令x1=x2=0,則有f(0)≥2f(0)-3,即f(0)≤3
又對于任意x∈[0,1],總有f(x)≥3,
∴f(0)=3。3分)
(Ⅱ)解:任取x1,x2∈[0,1],x1<x2,
f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-3
∵0≤x1<x2≤1,則0<x2-x1<1,
∴f(x2-x1)≥3
∴f(x2)≥f(x1)+3-3=f(x1),即f(x)在[0,1]上遞增.
∴當(dāng)x∈[0,1]時,f(x)≤f(1)=4
∴f(x)的最大值為4  。6分)
(Ⅲ)證明:當(dāng)n>1時,an=Sn-Sn-1=-(an-3)-(an-1-3),

∴數(shù)列{an}是以a1=1為首項,公比為 的等比數(shù)列.
∴an=(8分)
f(1)=f[3n-1]=f[+(3n-1-1)×]≥f( )+f[(3n-1-1)×]-3≥…
即 4≥3n-1f( )-3n+3.(10分)
∴f()≤,即f(an)≤3+
∴f(a1)+f(a2)+…+f(an)≤(3+ )+(3+ )+…+(3+
=3n+=3n+<3n+=3(n+).
= log333•32n-2= (2n+1)=3(n+ ),
∴原不等式成立.(14分)
分析:(Ⅰ)直接取x1=0,x2=0利用f(x1+x2)≥f(x1)+f(x2)-3可得:f(0)≤3,再結(jié)合已知條件f(0)≥3即可求得f(0)=3;
(Ⅱ)由0≤x1<x2≤1,則0<x2-x1<1,故有f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-3>f(x1),即f(x)在[0,1]內(nèi)是增函數(shù),故函數(shù)f(x)的最大值為f(1);
(Ⅲ)先證明數(shù)列{an}是以a1=1為首項,公比為 的等比數(shù)列,進(jìn)而可得f(1)=f[3n-1]=f[+(3n-1-1)×]≥f( )+f[(3n-1-1)×]-3≥…,即 4≥3n-1f( )-3n+3,即f(an)≤3+,從而可證不等式.
點(diǎn)評:本題主要是在新定義下對抽象函數(shù)進(jìn)行考查,在做關(guān)于新定義的題目時,一定要先研究定義,在理解定義的基礎(chǔ)上再做題.解題時要認(rèn)真審題,合理運(yùn)用條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有( 。﹤.
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因為3>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個根,則實數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數(shù)的交點(diǎn)為A,B,若m變化時,AB的長度是一個定值,則AB的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對于任意非零實數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
(1)求a的取值范圍;
(2)過曲線y=f(x)外的點(diǎn)P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點(diǎn)分別為A、B.
(ⅰ)證明:a=b;
(ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案