若函數(shù)f(x)滿足f(-x)=-f(x),并且當x>0時,f(x)=2x3-x+1,求當x<0時,f(x)=________.

2x3-x-1
分析:本題是利用奇的性質求對稱區(qū)間上的解析式,解此類題一般是先令x<0,得-x>0,再有x>0時,f(x)=2x3-x+1求出f(-x)的解析式,然后再由f(-x)=-f(x),求函數(shù)x<0時,f(x)=的解析式
解答:令x<0,得-x>0,
∵x>0時,f(x)=2x3-x+1
∴f(-x)=-2x3+x+1
又函數(shù)f(x)滿足f(-x)=-f(x),
∴-f(x)=-2x3+x+1
∴f(x)=2x3-x-1
故答案為2x3-x-1
點評:本題考查函數(shù)奇偶性的性質,正確解答本題關鍵是理解并掌握利用奇函數(shù)的性質求對稱區(qū)間上的解析式的方法步驟,書寫格式,此題規(guī)律清晰,同類題的解法步驟過程是一樣的.題后應好好總結,達到舉一反三的學習目的.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年湖北省荊州中學高三(上)第一次質量檢測數(shù)學試卷 (理科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南省洛陽一中高三(上)期中數(shù)學考前選擇題強化訓練(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省荊州中學高三(上)第一次質量檢測數(shù)學試卷 (文科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖南省湘西州邊城高級中學高三(上)月考數(shù)學試卷(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖南省湘西州古丈縣補習學校高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

同步練習冊答案