已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E,交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線(xiàn).
【答案】分析:(1)由于AC=AB,如果連接CD,那么只要證明出CD⊥AB,根據(jù)等腰三角形三線(xiàn)合一的特點(diǎn),我們就可以得出AD=BD,由于BC是圓的直徑,那么CD⊥AB,由此可證得.
(2)連接OD,再證明OD⊥DE即可.
解答:解:(1)證明:連接CD,
∵BC為⊙O的直徑,
∴CD⊥AB.
∵AC=BC,
∴AD=BD.
(2)證明:連接OD;
∵AD=BD,OB=OC,
∴OD∥AC.
∵DE⊥AC,
∴DF⊥OD.
∴DF是⊙O的切線(xiàn).
點(diǎn)評(píng):本題主要考查了切線(xiàn)的判定,等腰三角形的性質(zhì)等知識(shí)點(diǎn).要注意的是要證某線(xiàn)是圓的切線(xiàn),已知此線(xiàn)過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

9、已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E,交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,AB=AC,∠BAC=90°,AE=
1
3
AC,BD=
1
3
AB,點(diǎn)F在BC上,且CF=
1
3
BC.求證:
(1)EF⊥BC;
(2)∠ADE=∠EBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科做):已知:如圖,△ABC的邊BC長(zhǎng)為16,AC、AB邊上中線(xiàn)長(zhǎng)的和為30.
求:(I)△ABC的重心G的軌跡;
(II)頂點(diǎn)A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,∠B=60°,AD,CE是角平分線(xiàn).
求證:AE+CD=AC.

查看答案和解析>>

同步練習(xí)冊(cè)答案