如圖,六棱錐P-ABCDEF的底面ABCDEF是邊長為l的正六邊形,頂點(diǎn)P在底面上的射影是BF的中點(diǎn)O.
(1)求證:PA⊥BF;
(2)若直線PB與平面ABCDEF所成的角為,求二面角A-PB-D的余弦值.

【答案】分析:(1)利用線面垂直證明線線垂直,即證明BF⊥平面PAO;
(2)以O(shè)B,OD,OP分別為x,y,z軸,建立空間直角坐標(biāo)系,用坐標(biāo)表示點(diǎn),用坐標(biāo)表示向量,進(jìn)而求出兩平面的法向量,利用向量的夾角公式可求二面角A-PB-D的余弦值.
解答:(1)證明:連接OA,則∵AB=AF,BF的中點(diǎn)O,∴AO⊥BF
∵頂點(diǎn)P在底面上的射影是BF的中點(diǎn)O
∴PO⊥BF
∵AO∩PO=O
∴BF⊥平面PAO
∵PA?平面PAO
∴PA⊥BF;
(2)解:∵頂點(diǎn)P在底面上的射影是BF的中點(diǎn)O
∴∠PBO為直線PB與平面ABCDEF所成的角
∵直線PB與平面ABCDEF所成的角為,
∴∠PBO=
以O(shè)B,OD,OP分別為x,y,z軸,建立空間直角坐標(biāo)系,則A(0,-,0),B(,0,0),P(0,0,),D(0,,0)
,,
設(shè)平面APB的法向量為,則,
,領(lǐng)z=-1,可得
同理可得平面DPB的法向量為
設(shè)二面角A-PB-D的平面角為α,則
點(diǎn)評:本題考查線線垂直,考查面面角,解題的關(guān)鍵是利用線面垂直證明線線垂直,利用向量法,求面面角,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•九江一模)如圖所示,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,AB=2,PA=2
2
,M是PA的中點(diǎn).
(1)求證:平面PCD∥平面MBE;
(2)設(shè)PA=λAB,當(dāng)二面角D-ME-F的大小為135°,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•九江一模)如圖所示,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,AB=2,PA=2
2
,M是PA的中點(diǎn).
(1)求證:平面PCD∥平面MBE;
(2)求四棱錐M-BCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,AB=2,PA=2數(shù)學(xué)公式,M是PA的中點(diǎn).
(1)求證:平面PCD∥平面MBE;
(2)求四棱錐M-BCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC,AB=2,PA=2,M是PA的中點(diǎn).

(1)求證:平面PCD∥平面MBE;

(2)設(shè)PA=λAB,當(dāng)二面角D﹣ME﹣F的大小為135°,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江西省九江市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖所示,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,AB=2,PA=2,M是PA的中點(diǎn).
(1)求證:平面PCD∥平面MBE;
(2)求四棱錐M-BCDE的體積.

查看答案和解析>>

同步練習(xí)冊答案