已知函數(shù)f(x)=loga(x+2),g(x)=loga(2-x)(a>0且a≠1)
(1)判斷函數(shù)f(x)+g(x)的奇偶性,并說明理由;
(2)求使f(x)+g(x)<0成立的x的取值范圍.
分析:(1)由
x+2>0
2-x>0
求得函數(shù)的定義域為{x|-2<x<2},再根據(jù)f(-x)+g(-x)=g(x)+f(x),可得函數(shù)f(x)+g(x)為偶函數(shù).
(2)原不等式化為:loga(4-x2)<0,分當(dāng)0<a<1時、當(dāng)a>1時兩種情況,分別求得不等式的解集.
解答:解:(1)由
x+2>0
2-x>0
求得-2<x<2,故函數(shù)的定義域為{x|-2<x<2}.
再根據(jù)f(-x)+g(-x)=loga(-x+2)+loga(2+x)=g(x)+f(x),
故函數(shù)f(x)+g(x)為偶函數(shù).
(2)原不等式化為:loga(4-x2)<0,
當(dāng)0<a<1時,不等式等價于:4-x2>1,即x2<3,求得此時x的范圍是{x|-
3
<x<
3
}

當(dāng)a>1時,不等式等價于:0<4-x2<1,
求得此時x的范圍是{x|
3
<x<2或者-2<x<-
3
}
點評:本題主要考查求函數(shù)的定義域、判斷函數(shù)的奇偶性,對數(shù)不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,
屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案