某電視臺對什么年齡段的人更關(guān)注“2014兩會話題”情況進行調(diào)查,隨機采訪了50人,受訪者的年齡頻數(shù)分布及關(guān)注“兩會話題”的人數(shù)如下表:
年齡(單位:歲) [0,18) [18,26) [26,31) [31,36) [36,40) [40,80)
受訪人數(shù) 6 15 10 9 5 5
關(guān)注“兩會話題”人數(shù) 3 13 7 6 2 1
(Ⅰ)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并回答是否有97.5%的把握認(rèn)為年齡以36歲為分界點的市民對“兩會話題”的關(guān)注度有差異?
  36歲以下 36歲以上(含36歲) 合計
關(guān)注“兩會”      
不關(guān)注“兩會”      
合計      
附:下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
K 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
(Ⅱ)若從年齡在[36,40)歲的受訪對象中隨機選取三人進行調(diào)查,求至少有一人關(guān)注“”兩會話題”的概率.
考點:獨立性檢驗的應(yīng)用
專題:計算題,概率與統(tǒng)計
分析:(I)根據(jù)提供數(shù)據(jù),可填寫表格,利用公式,可計算K2的值,根據(jù)臨界值表,即可得到結(jié)論;
(II)在[36,40)歲的受訪對象,共5人,其中2人關(guān)注“”兩會話題”,從而可求至少有一人關(guān)注“”兩會話題”的概率.
解答: 解:(Ⅰ)2×2列聯(lián)表,
  36歲以下 36歲以上(含36歲) 合計
關(guān)注“兩會” 29   3 32 
不關(guān)注“兩會”  11  7 18 
合計  40  10 50 
∴K2=
50×(29×7-11×3)2
40×10×32×18
≈6.27>5.024,
∴有97.5%的把握認(rèn)為年齡以36歲為分界點的市民對“兩會話題”的關(guān)注度有差異;
(Ⅱ)在[36,40)歲的受訪對象,共5人,其中2人關(guān)注“”兩會話題”,
∴至少有一人關(guān)注“”兩會話題”的概率為1-
C
3
3
C
3
5
=
9
10
點評:本題考查獨立性檢驗、古典概型,是一道綜合題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖:正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn)分別是棱A1B1,CD的中點,點M是EF的動點,F(xiàn)M=x,過點M、直線AB的平面將正方體分成上下兩部分,記下面那部分的體積為V(x),則函數(shù)V(x)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x+φ)的圖象沿x軸向左平移
π
12
個單位后,得到函數(shù)g(x)的圖象,則“φ=-
π
6
”是“g(x)為偶函數(shù)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4cosx•sin(x+
π
6
)+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
sin(2x+
π
4
),
(1)借助”五點作圖法”畫出函數(shù)f(x)在[0,
8
]上的簡圖,
(2)依圖寫出函數(shù)f(x)在[0,
8
]上的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的圖象與x軸的交點中,相鄰兩交點之間的距離為
π
2
,且圖象上一個最低點為M(
3
,-2).
(1)求f(x)的解析式;
(2)X∈[
π
12
,
12
]時,若方程f(x)-m=0恰好有兩個不同的根x1,x2,求m的取值范圍及x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次招聘考試中,有12道備選題,其中8道A類題,4道B類題,每位考生都要在其中隨機抽出3道題回答
(Ⅰ)求某考生所抽到的3道題都是A類題的概率;
(Ⅱ)求所抽到的3道題不是同一類題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班學(xué)生舉行娛樂活動,準(zhǔn)備了5張標(biāo)有1,2,3,4,5的外表完全相同的卡片,規(guī)定通過游戲來決定抽獎機會,每個獲得抽獎機會的同學(xué),一次從中任意抽取2張卡片,兩個卡片中的數(shù)字之和為5時獲一等獎,兩個卡片中的數(shù)字之和能被3整除時獲二等獎,其余情況均沒有獎,現(xiàn)有某同學(xué)獲得一次抽獎機會.
(Ⅰ)求該同學(xué)獲得一等獎的概率;
(Ⅱ)求該同學(xué)不獲獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某網(wǎng)站針對“2014年法定節(jié)假日調(diào)休安排”展開的問卷調(diào)查,提出了A、B、C三種放假方案,調(diào)查結(jié)果如下:
支持A方案 支持B方案 支持C方案
35歲以下 200 400 800
35歲以上(含35歲) 100 100 400
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.

查看答案和解析>>

同步練習(xí)冊答案