【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝賓斯基在1915年提出,先作一個(gè)正三角形挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第4個(gè)大正三角形中隨機(jī)撒512粒大小均勻的細(xì)小顆粒物,則落在白色區(qū)域的細(xì)小顆粒物的數(shù)量約是( )
A.B.C.D.
【答案】C
【解析】
設(shè)第一個(gè)三角形的面積為,通過圖形中的比例關(guān)系可確定黑色部分面積是首項(xiàng)為,公比為的等比數(shù)列;通過計(jì)算第五個(gè)圖形中黑色部分面積可確定白色部分面積;根據(jù)均勻隨機(jī)數(shù)的思想可求得結(jié)果.
不妨設(shè)原三角形面積為,第一次挖去三角形的面積為,剩余面積為,接下來每挖一次,對每個(gè)小完整三角形來說挖去的面積都是原完整三角形面積的,剩余面積為,故第二次挖去以后剩余面積為,第三次挖去以后剩余面積為,所以第個(gè)圖中白色區(qū)域的面積為,所以落在白色區(qū)域的細(xì)小顆粒物約有(粒).
故選:C
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人玩擲正方體骰子走跳棋的游戲,已知骰子每面朝上的概率都是,棋盤上標(biāo)有第0站,第1站,第2站,……,第100站.一枚棋子開始在第0站,選手每擲一次骰子,棋子向前跳動(dòng)一次,若擲出朝上的點(diǎn)數(shù)為1或2,棋子向前跳兩站;若擲出其余點(diǎn)數(shù),則棋子向前跳一站,直到跳到第99站或第100站時(shí),游戲結(jié)束;設(shè)游戲過程中棋子出現(xiàn)在第站的概率為.
(1)當(dāng)游戲開始時(shí),若拋擲均勻骰子3次后,求棋子所走站數(shù)之和X的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)若最終棋子落在第99站,則記選手落敗,若最終棋子落在第100站,則記選手獲勝,請分析這個(gè)游戲是否公平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x22(a+2)x+a2,g(x)=x2+2(a2)xa2+8.設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則AB=( )
A.a22a16B.a2+2a16
C.16D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中“”表示一個(gè)陽爻,“”表示一個(gè)陰爻).若從八卦中任取兩卦,這兩卦的六個(gè)爻中恰有一個(gè)陽爻的概率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段是過拋物線的焦點(diǎn)F的一條弦,過點(diǎn)A(A在第一象限內(nèi))作直線垂直于拋物線的準(zhǔn)線,垂足為C,直線與拋物線相切于點(diǎn)A,交x軸于點(diǎn)T,給出下列命題:
(1);
(2);
(3).
其中正確的命題個(gè)數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】法國的數(shù)學(xué)家費(fèi)馬(PierredeFermat)曾在一本數(shù)學(xué)書的空白處寫下一個(gè)看起來很簡單的猜想:當(dāng)整數(shù)時(shí),找不到滿足的正整數(shù)解.該定理史稱費(fèi)馬最后定理,也被稱為費(fèi)馬大定理.費(fèi)馬只是留下這個(gè)敘述并且說他已經(jīng)發(fā)現(xiàn)這個(gè)定理的證明妙法,只是書頁的空白處不夠無法寫下.費(fèi)馬也因此為數(shù)學(xué)界留下了一個(gè)千古的難題,歷經(jīng)數(shù)代數(shù)學(xué)家們的努力,這個(gè)難題直到1993年才由我國的數(shù)學(xué)家毛桂成完美解決,最終證明了費(fèi)馬大定理的正確性.現(xiàn)任取,則等式成立的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】武漢某商場為促進(jìn)市民消費(fèi),準(zhǔn)備每周隨機(jī)的從十個(gè)熱門品牌中抽取一個(gè)品牌送消費(fèi)券,并且某個(gè)品牌被抽中后不再參與后面的抽獎(jiǎng),沒有抽中的品牌則繼續(xù)參加下周抽獎(jiǎng),假設(shè)每次抽取時(shí)各品牌被抽到的可能性相同,每次抽取也相互獨(dú)立.
(1)求某品牌到第三次才被抽到的概率;
(2)為了使更多品牌參加活動(dòng),商場做出調(diào)整,從第一周抽取后開始每周會(huì)有一個(gè)新的品牌補(bǔ)充進(jìn)抽取隊(duì)伍,品牌A從第一周就開始參加抽獎(jiǎng),商場準(zhǔn)備開展半年(按26周計(jì)算)的抽獎(jiǎng)活動(dòng),記品牌A參與抽獎(jiǎng)的次數(shù)為X,試求X的數(shù)學(xué)期望(精確到0.01).
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),過點(diǎn)作拋物線的兩切線,切點(diǎn)為.
(1)求兩切點(diǎn)所在的直線方程;
(2)橢圓,離心率為,(1)中直線AB與橢圓交于點(diǎn)P,Q,直線的斜率分別為,,,若,求橢圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com