甲罐中有5個紅球、2個白球和3個黑球,乙罐中有4個紅球、3個白球和3個黑球,先從甲罐中隨機取出一球放入乙罐,分別以A1、A2和A3表示由甲罐中取出的球是紅球、白球和黑球的事件;再從乙罐中隨機取出一球,以B表示由乙罐中取出的球是紅球的事件.則P(B)=
9
22
9
22
分析:由題意A1,A2,A3是兩兩互斥的事件,P(B)=P(B|A1)+P(B|A2)+P(B|A3),利用條件概率的概率公式求出
P(B|A1),P(B|A2),P(B|A3)即可.
解答:解:由題意A1,A2,A3是兩兩互斥的事件,
而P(B)=P(B|A1)+P(B|A2)+P(B|A3
=
5
10
×
5
11
+
2
10
×
4
11
+
3
10
×
4
11
=
9
22

故答案為
9
22
點評:本題考查相互獨立事件,解題的關鍵是理解題設中的各個事件,且熟練掌握了相互獨立事件的概率簡潔公式,條件概率的求法,本題較復雜,正確理解事件的內(nèi)蘊是解題的突破點
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲罐中有5個紅球,2個白球和3個黑球,乙罐中有4個紅球,3個白球和3個黑球.先從甲罐中隨機取出一球放入乙罐,分別以A1,A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件;再從乙罐中隨機取出一球,以B表示由乙罐取出的球是紅球的事件,則下列結論中正確的是
 
(寫出所有正確結論的編號).
P(B)=
2
5

P(B|A1)=
5
11
;
③事件B與事件A1相互獨立;
④A1,A2,A3是兩兩互斥的事件;
⑤P(B)的值不能確定,因為它與A1,A2,A3中哪一個發(fā)生有關.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲罐中有5個紅球,2個白球和3個黑球,乙罐中有4個紅球,3個白球和3個黑球.先從甲罐中隨機取出一球放入乙罐,分別以A1,A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件.再從乙罐中隨機取出一球,以B表示由乙罐取出的球是紅球的事件.給出下列結論:
①P(B)=
2
5
;
②P(B|A1)=
5
11
;
③事件B與事件A1相互獨立;
④A1,A2,A3是兩兩互斥的事件;
⑤P(B)的值不能確定,因為它與A1,A2,A3中究竟哪一個發(fā)生有關;
其中正確的有( 。
A、②④B、①③
C、②④⑤D、②③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考試題分項版理科數(shù)學之專題十三導數(shù) 題型:填空題

甲罐中有5個紅球,2個白球和3個黑球,乙罐中有4個紅球,3個白球和3個黑球。先從甲罐中隨機取出一球放入乙罐,分別以表示由甲罐取出的球是紅球,白球和黑球的事件;再從乙罐中隨機取出一球,以表示由乙罐取出的球是紅球的事件,則下列結論中正確的是________(寫出所有正確結論的編號)。

;

;[來源:]

③事件與事件相互獨立;

是兩兩互斥的事件;

的值不能確定,因為它與中空間哪一個發(fā)生有關

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考試題分項版理科數(shù)學之專題十排列、組合、二項式定理 題型:填空題

甲罐中有5個紅球,2個白球和3個黑球,乙罐中有4個紅球,3個白球和3個黑球。先從甲罐中隨機取出一球放入乙罐,分別以表示由甲罐取出的球是紅球,白球和黑球的事件;再從乙罐中隨機取出一球,以表示由乙罐取出的球是紅球的事件,則下列結論中正確的是________(寫出所有正確結論的編號)。

;[來源:]

③事件與事件相互獨立;

是兩兩互斥的事件;

的值不能確定,因為它與中空間哪一個發(fā)生有關

 

查看答案和解析>>

同步練習冊答案