已知從圓O外一點(diǎn)A作直線交圓O于B,C兩點(diǎn),且AB•AC=60,OA=8,則此圓的半徑為_(kāi)_______.

2
分析:設(shè)出圓的半徑,把AB和AC用r表示,根據(jù)所給的比例式AB•AC=60,代入用半徑所表示的量,得到關(guān)于半徑r的方程,解方程即可.
解答:設(shè)圓的半徑是r,
∵AB•AC=60,OA=8,
∴(8+r)(8-r)=60,
∴64-r2=60,
∴r=2,
故答案為:2
點(diǎn)評(píng):本題考查與圓有關(guān)的比例線段,本題不是要求我們根據(jù)條件寫(xiě)出比例線段,而是根據(jù)所給的比例線段,代入數(shù)據(jù)進(jìn)行運(yùn)算,本題是一個(gè)簡(jiǎn)單的運(yùn)算題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、已知從圓O外一點(diǎn)A作直線交圓O于B,C兩點(diǎn),且AB•AC=60,OA=8,則此圓的半徑為
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
AB與OP交于點(diǎn)M,設(shè)CD為過(guò)點(diǎn)M且不過(guò)圓心O的一條弦,
求證:O,C,P,D四點(diǎn)共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=[
 
1
1
],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2
2
sin(θ-
π
4
),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長(zhǎng).
D.選修4-5(不等式選講)
已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
AB與OP交于點(diǎn)M,設(shè)CD為過(guò)點(diǎn)M且不過(guò)圓心O的一條弦,
求證:O,C,P,D四點(diǎn)共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=[],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2sin(),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C所截得的弦長(zhǎng).
D.選修4-5(不等式選講)
已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省東莞市高考數(shù)學(xué)模擬試卷1(理科)(解析版) 題型:解答題

已知從圓O外一點(diǎn)A作直線交圓O于B,C兩點(diǎn),且AB•AC=60,OA=8,則此圓的半徑為   

查看答案和解析>>

同步練習(xí)冊(cè)答案