(08年揚(yáng)州中學(xué)) 設(shè)橢圓C:的左焦點(diǎn)為F,上頂點(diǎn)為A,過點(diǎn)A與AF垂直的直線分別交橢圓C與x軸正半軸于點(diǎn)P、Q,且.

⑴求橢圓C的離心率;⑵若過A、Q、F三點(diǎn)的圓恰好與直線l:相切,求橢圓C的方程.

 

解析:⑴解:設(shè)Q(x0,0),由F(-c,0)A(0,b)知

    設(shè),

因?yàn)辄c(diǎn)P在橢圓上,所以

得2b2=3ac,即2(a2-c2)=3ac,,故橢圓的離心率e=

⑵由⑴知于是F(-a,0) Q,△AQF的外接圓圓心為(a,0),半徑r=|FQ|=a

所以,解得a=2,∴c=1,b=,所求橢圓方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

 (08年揚(yáng)州中學(xué))  中,角A、B、C所對的邊分別為、,已知

(1)求的值;(2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (08年揚(yáng)州中學(xué)) 已知數(shù)列,中,,且是函數(shù)

的一個(gè)極值點(diǎn).

(1)求數(shù)列的通項(xiàng)公式;

(2) 若點(diǎn)的坐標(biāo)為(1,)(,過函數(shù)圖像上的點(diǎn) 的切線始終與平行(O 為原點(diǎn)),求證:當(dāng) 時(shí),不等式

對任意都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (08年揚(yáng)州中學(xué))

    

     (1)推導(dǎo)sin3α關(guān)于sinα的表達(dá)式;

(2)求sin18°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (08年揚(yáng)州中學(xué))已知函數(shù).

(1)求證:函數(shù)內(nèi)單調(diào)遞增;

(2)若關(guān)于的方程上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (08年揚(yáng)州中學(xué)) (16分)

表示數(shù)列從第項(xiàng)到第項(xiàng)(共項(xiàng))之和.

(1)在遞增數(shù)列中,是關(guān)于的方程為正整數(shù))的兩個(gè)根.求的通項(xiàng)公式并證明是等差數(shù)列;

(2)對(1)中的數(shù)列,判斷數(shù)列,,,…,的類型;

(3)對一般的首項(xiàng)為,公差為的等差數(shù)列,提出與(2)類似的問題,你可以得到怎樣的結(jié)論,證明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊答案