(2012•北京)設(shè)不等式組
0≤x≤2
0≤y≤2
,表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是(  )
分析:本題屬于幾何概型,利用“測(cè)度”求概率,本例的測(cè)度即為區(qū)域的面積,故只要求出題中兩個(gè)區(qū)域:由不等式組表示的區(qū)域 和到原點(diǎn)的距離大于2的點(diǎn)構(gòu)成的區(qū)域的面積后再求它們的比值即可.
解答:解:其構(gòu)成的區(qū)域D如圖所示的邊長(zhǎng)為2的正方形,面積為S1=4,
滿足到原點(diǎn)的距離大于2所表示的平面區(qū)域是以原點(diǎn)為圓心,以2為半徑的圓外部,
面積為S2=4-
π×22
4
=4-π,
∴在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率P=
4-π
4

故選D.
點(diǎn)評(píng):本題考查幾何概型,幾何概型的概率的值是通過(guò)長(zhǎng)度、面積、和體積、的比值得到,本題是通過(guò)兩個(gè)圖形的面積之比得到概率的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京)設(shè)a,b∈R.“a=O”是“復(fù)數(shù)a+bi是純虛數(shù)”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京)設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合.對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n);記K(A)為|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 1 -0.8
0.1 -0.3 -1
(2)設(shè)數(shù)表A∈S(2,3)形如
1 1 c
a b -1
求K(A)的最大值;
(3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)某家俱公司生產(chǎn)甲、乙兩種型號(hào)的組合柜,每種組合柜的制造白坯時(shí)間、油漆時(shí)間如下表:
型號(hào)甲 型號(hào)乙 生產(chǎn)能力(臺(tái)/天)
制白坯時(shí)間(天) 6 12 120
油漆時(shí)間(天) 8 4 64
設(shè)該公司安排甲、乙二種柜的日產(chǎn)量分別為x,y,則20x+24y的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京)設(shè)A是如下形式的2行3列的數(shù)表,
a b c
d e f
滿足性質(zhì)P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.
記ri(A)為A的第i行各數(shù)之和(i=1,2),Cj(A)為A的第j列各數(shù)之和(j=1,2,3);記k(A)為|r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值.
(1)對(duì)如下數(shù)表A,求k(A)的值
1 1 -0.8
0.1 -0.3 -1
(2)設(shè)數(shù)表A形如
1 1 -1-2d
d d -1
其中-1≤d≤0.求k(A)的最大值;
(Ⅲ)對(duì)所有滿足性質(zhì)P的2行3列的數(shù)表A,求k(A)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案