已知函數(shù)(為實(shí)數(shù),),,⑴若,且函數(shù)的值域為,求的表達(dá)式;
⑵設(shè),且函數(shù)為偶函數(shù),判斷是否大0?
⑶設(shè),當(dāng)時,證明:對任意實(shí)數(shù),(其中是的導(dǎo)函數(shù)) .
(1),(2)成立,(3)證明略.
解析試題分析:(1)由于的表達(dá)式與有關(guān),而確定的表達(dá)式只需求出待定系數(shù),因此只要根據(jù)題目條件聯(lián)立關(guān)于的兩個關(guān)系即可;(2)由為偶函數(shù)可先確定,而可不妨假設(shè),則,代入的表達(dá)式即可判斷的符號;(3)原不等式證明等價于證明“對任意實(shí)數(shù),” 即等價于證明“ ”,可先證,再證.根據(jù)不等式性質(zhì),可證得.
試題解析:⑴因為,所以,因為的值域為,所以,所以,所以,所以;
⑵因為是偶函數(shù),所以,又,所以,因為,不妨設(shè),則,又,所以,此時,所以;
⑶因為,所以,又,則,因為,所以,則原不等式證明等價于證明“對任意實(shí)數(shù),” 即 .
先研究 ,再研究.
① 記,,令,得,當(dāng),時,單增;當(dāng),時,單減. 所以,,即.
② 記,,所以在,單減,所以,,即.
綜上①、②知,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù), .
(1)求在點(diǎn)處的切線方程;
(2)證明: 曲線與曲線有唯一公共點(diǎn);
(3)設(shè),比較與的大小, 并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于三次函數(shù)。
定義:(1)設(shè)是函數(shù)的導(dǎo)數(shù)的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”;
定義:(2)設(shè)為常數(shù),若定義在上的函數(shù)對于定義域內(nèi)的一切實(shí)數(shù),都有成立,則函數(shù)的圖象關(guān)于點(diǎn)對稱。
己知,請回答下列問題:
(1)求函數(shù)的“拐點(diǎn)”的坐標(biāo)
(2)檢驗函數(shù)的圖象是否關(guān)于“拐點(diǎn)”對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個三次函數(shù),使得它的“拐點(diǎn)”是(不要過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b為常數(shù)).
(1)若g(x)在x=l處的切線方程為y=kx-5(k為常數(shù)),求b的值;
(2)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f’(x),若存在唯一的實(shí)數(shù)x0,使得f(x0)=x0與f′(x0)=0同時成立,求實(shí)數(shù)b的取值范圍;
(3)令F(x)=f(x)-g(x),若函數(shù)F(x)存在極值,且所有極值之和大于5+1n2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,,
(1)當(dāng)時,求的單調(diào)區(qū)間
(2)若在上是遞減的,求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),使的極大值為3?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
修建一個面積為平方米的矩形場地的圍墻,要求在前面墻的正中間留一個寬度為2米的出入口,后面墻長度不超過20米,已知后面墻的造價為每米45元,其它墻的造價為每米180元,設(shè)后面墻長度為x米,修建此矩形場地圍墻的總費(fèi)用為元.
(1)求的表達(dá)式;
(2)試確定x,使修建此矩形場地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知函數(shù)圖像在點(diǎn)的
切線與圖像在點(diǎn)M處的切線平行,則點(diǎn)M的坐標(biāo)為 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com