【題目】已知集合A,B,若A不是B的子集,則下列命題中正確的是( )
A.對任意的a∈A,都有aB
B.對任意的b∈B,都有bA
C.存在a0 , 滿足a0∈A,a0B
D.存在a0 , 滿足a0∈A,a0∈B

【答案】C
【解析】A不是B的子集,也就是說A中存在某個元素不屬于B,顯然正是C選項要表達(dá)的.對于A和B選項,取A={1,2},B={2,3}可否定,對于D選項,取A={1},B={2,3}可否定.故答案為:C.
弄清A不是B的子集的實質(zhì),也就是說A中存在某個元素不屬于B,找到選項中表述正確的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于直線的傾斜角與斜率,下列說法正確的是( )
A.所有的直線都有傾斜角和斜率
B.所有的直線都有傾斜角但不一定都有斜率
C.直線的傾斜角和斜率有時都不存在
D.所有的直線都有斜率,但不一定有傾斜角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將二進(jìn)制數(shù)10001(2)化為五進(jìn)制數(shù)為(  )

A32(5) B23(5)

C.21(5) D.12(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

1當(dāng)時,求函數(shù)的定義域;

2,請判定的奇偶性;

3是否存在實數(shù),使函數(shù)遞增,并且最大值為1,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成個等級,等級系數(shù)依次,其中為標(biāo)準(zhǔn),為標(biāo)準(zhǔn).已知甲廠執(zhí)行標(biāo)準(zhǔn)生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價元/件;乙廠執(zhí)行標(biāo)準(zhǔn)生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為/件,假定甲、乙兩廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn).

(1)已知甲廠產(chǎn)品的等級系數(shù)的概率分布如下所示

的數(shù)學(xué)期望,求的值;

(2)為分析乙廠產(chǎn)品的等級系數(shù),從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:

用這個樣本的頻率分布估計總體分布,將頻視為概,求等級系數(shù)的數(shù)學(xué)期望;

(3)(1)、(2)的條件下,若以性價比為判斷標(biāo)準(zhǔn),則哪個工廠的產(chǎn)品更具可購買性?說明理由.注:產(chǎn)品的性價;

性價大的產(chǎn)品更具可購性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形所在平面垂直于直角梯所在平面,平面平面,且,且.

(1)設(shè)點為棱中點,在內(nèi)是否存在點,使得平面?若存在,請證明,若不存在,說明理由;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在凸四邊形中,為定點,,為動點,滿足.

1寫出的關(guān)系式;

2設(shè)BCD和ABD的面積分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,a1=8,a4=2且滿足an+2=2an+1-annN+

1求數(shù)列{an}通項公式;

2設(shè)Sn=|a1|+|a2|++|an|,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校學(xué)生喜歡吃辣是否與性別有關(guān),隨機(jī)對此校100人進(jìn)行調(diào)查,得到如下的列表:已知在全部100人中隨機(jī)抽取1人抽到喜歡吃辣的學(xué)生的概率為

喜歡吃辣

不喜歡吃辣

合計

男生

10

女生

20

合計

100

(1)請將上面的列表補(bǔ)充完整;

(2)是否有99.9%以上的把握認(rèn)為喜歡吃辣與性別有關(guān)?說明理由:

下面的臨界值表供參考:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

同步練習(xí)冊答案