【題目】設(shè)橢圓C的方程為,O為坐標原點,A為橢團的上頂點,為其右焦點,D是線段的中點,且.
(1)求橢圓C的方程;
(2)過坐標原點且斜率為正數(shù)的直線交橢圓C于P,Q兩點,分別作軸,軸,垂足分別為E,F,連接,并延長交橢圓C于點M,N兩點.
(。┡袛的形狀;
(ⅱ)求四邊形面積的最大值.
【答案】(1)(2)(ⅰ)為直角三角形(ⅱ)
【解析】
(1)根據(jù)題意得到,在求出,得到橢圓標準方程;(2)(。┫仍O(shè)直線和的方程,分別與橢圓方程聯(lián)立,得到點的坐標,從而表示出直線的斜率,得到,從而做出判斷;(ⅱ)先得到四邊形面積是面積的2倍,利用弦長公式得到,,從而表示出的面積,再利用基本不等式得到其最大值,從而得到四邊形面積的最大值.
解:(1)設(shè)橢圓的半焦距為c.
由題意可得,D為的中點,
∴,
∴,∴,
∴橢圓的方程為.
(2)(1)設(shè)直線的方程為,且點P在第一象限,
聯(lián)立消去y得,
顯然,
∴,.
又∵軸,∴,
∴,
∴直線的方程為,
聯(lián)立消去y得,
,
∴.
∵,
∴,
,
∴,
∴,
即為直角三角形.
(ⅱ)根據(jù)圖形的對稱性可知,四邊形面積是面積的2倍,
由(。┲為直角三角形,且,
∴.
又
,
,
∴
.
令,∵,∴,
∴,而在上單調(diào)遞增,
所以,所以
即當時,最大,此時的面積也達到最大,
由對稱性可知,
故當時,最大,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會》亮點頗多,十場比賽每場都有一首特別設(shè)計的開場詩詞,在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.因為前四場播出后反響很好,所以節(jié)目組決定《將進酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外確定的兩首詩詞排在后六場,并要求《將進酒》與《望岳》相鄰,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰,且均不排在最后,則后六場開場詩詞的排法有( )
A. 144種 B. 48種 C. 36種 D. 72種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線的極坐標方程為(常數(shù)),曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標方程和的普通方程;
(2)若曲線,有兩個不同的公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》全稱《新編直指算法統(tǒng)宗》,是屮國古代數(shù)學(xué)名著,程大位著.書中有如下問題:“今有五人均銀四十兩,甲得十兩四錢,戊得五兩六錢.問:次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分10兩4錢,戊分5兩6錢,且相鄰兩項差相等,則乙丙丁各分幾兩幾錢?(注:1兩等于10錢)( )
A.乙分8兩,丙分8兩,丁分8兩B.乙分8兩2錢,丙分8兩,丁分7兩8錢
C.乙分9兩2錢,丙分8兩,丁分6兩8錢D.乙分9兩,丙分8兩,丁分7兩
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“初中數(shù)學(xué)靠練,高中數(shù)學(xué)靠悟”.總結(jié)反思自己已經(jīng)成為數(shù)學(xué)學(xué)習(xí)中不可或缺的一部分,為了了解總結(jié)反思對學(xué)生數(shù)學(xué)成績的影響,某校隨機抽取200名學(xué)生,抽到不善于總結(jié)反思的學(xué)生概率是0.6.
(1)完成列聯(lián)表(應(yīng)適當寫出計算過程);
(2)試運用獨立性檢驗的思想方法分析是否有的把握認為學(xué)生的學(xué)習(xí)成績與善于總結(jié)反思有關(guān).
統(tǒng)計數(shù)據(jù)如下表所示:
不善于總結(jié)反思 | 善于總結(jié)反思 | 合計 | |
學(xué)習(xí)成績優(yōu)秀 | 40 | ||
學(xué)習(xí)成績一般 | 20 | ||
合計 | 200 |
參考公式:其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體中,分別為棱的中點.為面對角線上任一點,則下列說法正確的是( )
A.平面內(nèi)存在直線與平行
B.平面截正方體所得截面面積為
C.直線和所成角可能為60°
D.直線和所成角可能為30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線是由兩個定點和點的距離之積等于的所有點組成的,對于曲線,有下列四個結(jié)論:①曲線是軸對稱圖形;②曲線上所有的點都在單位圓內(nèi);③曲線是中心對稱圖形;④曲線上所有點的縱坐標.其中,所有正確結(jié)論的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點,且焦點為F,直線l與拋物線相交于A,B兩點.
⑴求拋物線C的方程,并求其準線方程;
⑵為坐標原點.若,證明直線l必過一定點,并求出該定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com