【題目】已知p:方程x2+mx+1=0有兩個不等的負根;q:方程4x2+4(m﹣2)x+1=0無實根,若“p或q”真“p且q”為假,求m的取值范圍.

【答案】解:若方程 x2+mx+1=0有兩個不等的負根,

解得m>2,
若方程4x2+4(m﹣2)x+1=0無實根,則△=16(m﹣2)2﹣16<0,
解得:1<m<3
∵“p或q”真“p且q”,
因此,命題p,q應一真一假,
,
解得:m∈(1,2]∪[3,+∞).
【解析】若“p或q”真“p且q”為假,命題p,q應一真一假,分類討論,可得m的取值范圍.
【考點精析】認真審題,首先需要了解命題的真假判斷與應用(兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】解答題
(1)在邊長為1的正方形ABCD內(nèi)任取一點M,求事件“|AM|≤1”的概率;
(2)某班在一次數(shù)學活動中,老師讓全班56名同學每人隨機寫下一對都小于1的正實數(shù)x、y,統(tǒng)計出兩數(shù)能與1構成銳角三角形的三邊長的數(shù)對(x,y)共有12對,請據(jù)此估計π的近似值(精確到0.001).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,如圖是根據(jù)調(diào)查結果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].將日均收看該類體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.則抽取的100名觀眾中“體育迷”有名.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:x∈[1,2],x2﹣a≥0,命題q:x0∈R,使得x02+(a﹣1)x0﹣1<0,若p∨q為真,p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果把直角三角形的三邊都增加同樣的長度,則這個新的三角形的形狀為(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.由增加的長度決定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面有五個命題:
①函數(shù)y=sin4θ﹣cos4θ的最小正周期是π;
②終邊在y軸上的角的集合是 ;
③把 的圖象向右平移 得到y(tǒng)=3sin2x的圖象;
④函數(shù) 在[0,π]是減函數(shù);
其中真命題的序號是(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分16分)已知函數(shù),

1)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍;

2)若直線是函數(shù)圖象的切線,求的最小值;

3)當時,若的圖象有兩個交點,求證: .(取,取,取

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx+c在點x=2處取得極值c﹣16. (Ⅰ)求a,b的值;
(Ⅱ)若f(x)有極大值28,求f(x)在[﹣3,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若fx)的圖象與gx)的圖象所在兩條曲線的一個公共點在y軸上,且在該點處兩條曲線的切線互相垂直,求bc的值。

2)若ac1,b0,試比較fx)與gx)的大小,并說明理由;

3)若bc0,證明:對任意給定的正數(shù)a,總存在正數(shù)m,使得當x時,

恒有fx)>gx)成立。

查看答案和解析>>

同步練習冊答案