【題目】已知數(shù)列滿足:對任意,都有.

1)若,求的值;

2)若是等比數(shù)列,求的通項公式;

3)設(shè),,求證:若成等差數(shù)列,則也成等差數(shù)列.

【答案】13;(2;(3)見解析.

【解析】

1)依據(jù)下標(biāo)的關(guān)系,有,,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項公式知,求出首項和公比即可。利用關(guān)系式,列出方程,可以解出首項和公比;(3)利用等差數(shù)列的定義,即可證出。

1)因為對任意,都有,所以,兩式相加,,解得;

2)設(shè)等比數(shù)列的首項為,公比為,因為對任意,都有,

所以有,解得,又 ,

即有,化簡得,,即

,因為,化簡得,所以

3)因為對任意,都有,所以有

成等差數(shù)列,設(shè)公差為,

,, ,

,由等差數(shù)列的定義知,

也成等差數(shù)列。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中的導(dǎo)函數(shù).

1)若恒成立,求實數(shù)的取值范圍;

2)設(shè),比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求曲線處切線的斜率;

2)求的單調(diào)區(qū)間;

3)設(shè),若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=

1)求fx)>0的解集;

2)若xR時,恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測試,學(xué)生如果通過其中2次測試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測試,而每個學(xué)生最多也只能參加5次測試假設(shè)某學(xué)生每次通過測試的概率都是,每次測試時間間隔恰當(dāng),每次測試通過與否互相獨立.

1)求該學(xué)生考上大學(xué)的概率.

2)如果考上大學(xué)或參加完5次測試就結(jié)束,記該生參加測試的次數(shù)為X,求X的概率分布及X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元2020年春,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國科研人員,在研究新型冠狀病毒某種疫苗的過程中,利用小白鼠進行科學(xué)試驗.為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對小白鼠進行做接種試驗.該試驗的設(shè)計為:①對參加試驗的每只小白鼠每天接種一次;②連續(xù)接種三天為一個接種周期;③試驗共進行3個周期.已知每只小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無關(guān).

1)若某只小白鼠出現(xiàn)癥狀即對其終止試驗,求一只小白鼠至多能參加一個接種周期試驗的概率;

2)若某只小白鼠在一個接種周期內(nèi)出現(xiàn)2次或3癥狀,則在這個接種周期結(jié)束后,對其終止試驗.設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第十三屆全國人民代表大會第二次會議和政協(xié)第十三屆全國委員會第二次會議(簡稱兩會)將分別于日和日在北京開幕.全國兩會召開前夕,某網(wǎng)站推出兩會熱點大型調(diào)查,調(diào)查數(shù)據(jù)表明,網(wǎng)約車安全問題是百姓最為關(guān)心的熱點之一,參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與者中隨機選出人,并將這人按年齡分組:第,第,第,第,第,得到的頻率分布直方圖如圖所示:

(Ⅰ)現(xiàn)在要從年齡較小的第組中用分層抽樣的方法抽取人,再從這人中隨機抽取人贈送禮品,求抽取的人中至少有人年齡在第組的概率;

(Ⅱ)把年齡在第,,組的人稱為青少年組,年齡在第組的人稱為中老年組,若選出的人中不關(guān)注網(wǎng)約車安全問題的人中老年人有人,問是否有的把握認(rèn)為是否關(guān)注網(wǎng)約車安全問題與年齡有關(guān)?附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)f(x)的單調(diào)性;

(2)若函數(shù)f(x)在定義域內(nèi)恒有f(x)≤0,求實數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)的焦點為,準(zhǔn)線為,若點在拋物線上,點在直線上,且是周長為12的等邊三角形.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)設(shè)過點的直線與拋物線交于不同的兩點,,若,求直線斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案