已知向量
a,
b
,其中|
a
|=
3,
|
b
|=2
,且(
a
+
b
)⊥
a
,則向量
a
b
的夾角是
150°
150°
分析:|
a
| =
3
,|
b
| =2
,且(
a
+
b
)⊥
a
,知
a
 2
+|
a
| •|
b
|
cos<
a
b
>=0,即3+2
3
cos<
a
,
b
>=0,由此能求出向量
a
b
的夾角.
解答:解:∵|
a
| =
3
,|
b
| =2
,且(
a
+
b
)⊥
a
,
a
 2
+|
a
| •|
b
|
cos<
a
b
>=0,
即3+2
3
cos<
a
,
b
>=0,
解得cos<
a
,
b
>=-
3
2
,
∴向量
a
b
的夾角是150°,
故答案為:150°.
點(diǎn)評(píng):本題考查向量的數(shù)量積判斷兩個(gè)向量垂直的條件的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列五個(gè)命題:
①“若x+y=0,則x,y互為相反數(shù)”的逆命題;
②在平面內(nèi),F(xiàn)1、F2是定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|-|MF2|=4|,則點(diǎn)M的軌跡是雙曲線.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件.
④“若-3<m<5則方程
x2
5-m
+
y2
m+3
=1
是橢圓”.
⑤已知向量
a
b
,
c
是空間的一個(gè)基底,則向量
a
+
b
,
a
-
b
,
c
也是空間的一個(gè)基底.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)判斷:
①若非零向量
a
、
b
滿足
a
b
,則向量
a
b
所在的直線互相平行或重合;
②在△ABC中,
AB
+
BC
+
CA
=
0
;
③已知向量
a
b
為非零向量,若
a
b
=
a
c
,則
b
=
c
;
④向量
a
b
滿足|
a
b
|=|
a
|•|
b
|
,則
a
b

⑤已知向量
a
、
b
為非零向量,則有(
a
b
)•
c
=
a
•(
b
c
)

其中正確的是
 
.(填入所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①如果命題“?p”與命題“p或q”都是真命題,那么命題q一定是真命題;
②已知向量
a
,
b
滿足|
a
|=1,|
b
|=4
,且
a
b
=2
,則
a
b
的夾角為
π
6

③若函數(shù)f(x+1)是奇函數(shù),f(x-1)是偶函數(shù),且f(0)=2,則f(2012)=2;
④已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù),函數(shù)g(x)=log4(a•2x-
4
3
a)
,若函數(shù)f(x)的圖象與函數(shù)g(x)的圖象有且只有一個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是(1,+∞).
其中正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列五個(gè)命題:
①“若x+y=0,則x,y互為相反數(shù)”的逆命題.
②在平面內(nèi),F(xiàn)1、F2是定點(diǎn),丨F1F2丨=6,動(dòng)點(diǎn)M滿足丨MF1丨-丨MF2丨=4,則點(diǎn)M的軌跡是雙曲線.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件.
④“若-3<m<5,則方程
x2
5-m
+
y2
m+3
=1是橢圓”.
⑤已知向量
a
,
b
c
是空間的一個(gè)基底,則向量
a
+
b
,
a
-
b
c
也是空間的一個(gè)基底.
⑥橢圓
x2
25
+
y2
9
=1上一點(diǎn)P到一個(gè)焦點(diǎn)的距離為5,則P到另一個(gè)焦點(diǎn)的距離為5.
其中真命題的序號(hào)是
①③⑤⑥
①③⑤⑥

查看答案和解析>>

同步練習(xí)冊(cè)答案