中,,,則              ( 。
A.B.C.D.
A

本題考查正弦定理
,, 由正弦定理可得,,而,
所以,故選擇A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓方程為,射線(x≥0)與橢圓的交點為M,過M作傾斜角互補的兩條直線,分別與橢圓交于A、B兩點(異于M).
(Ⅰ)求證直線AB的斜率為定值;
(Ⅱ)求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
橢圓與拋物線的一個交點為M,拋物線在點M處的切線過橢圓的右焦點F.

(Ⅰ)若M,求的標準方程;
(II)求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過橢圓內(nèi)一點引一條弦,使得弦被點平分,則此弦所在的直線方程為     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的左,右焦點坐標分別為,離心率是。橢圓C的左,右頂點分別記為A,B。點S是橢圓C上位于軸上方的動點,直線AS,BS與直線分別交于M,N兩點。
(1)      求橢圓C的方程;
(2)      求線段MN長度的最小值;
(3)      當線段MN的長度最小時,在橢圓C上的T滿足:T到直線AS的距離等于.
試確定點T的個數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知為原點,從橢圓 + =1的左焦點引圓的切線交橢圓于點,切點位于之間,為線段的中點,則的值為_______________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點,橢圓的右準線與x軸相交于點D,右焦點F到上頂點的距離為
(1)求橢圓的方程;
(2)是否存在過點F且與x軸不垂直的直線與橢圓交于A、B兩點,使得?若存在,求出直線;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.已知為正數(shù),其中是常數(shù),且的最小值是,滿足條件的點是橢圓一弦的中點,則此弦所在的直線方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線被橢圓所截得弦的中點坐標為(   )
                     C         D 

查看答案和解析>>

同步練習冊答案