分析:本題考查的知識點(diǎn)是指數(shù)函數(shù)的單調(diào)性、對數(shù)函數(shù)的單調(diào)性及復(fù)合函數(shù)單調(diào)性,我們要先求出函數(shù)的定義域,然后從內(nèi)到外逐步分析,(
)
x、[1-(
)
x]的單調(diào)性和取值范圍,再結(jié)合0<a<1及復(fù)合函數(shù)“同增異減”的原則,判斷l(xiāng)og
a[1-(
)
x]的單調(diào)性及函數(shù)值的取值范圍.
解答:解:要使函數(shù)y=log
a[1-(
)
x]的解析式有意義
則1-(
)
x>0
即(
)
x<1
即x>0
當(dāng)x∈(0,+∞)時,(
)
x為減函數(shù),且0<(
)
x<1
[1-(
)
x]為增函數(shù),且0<[1-(
)
x]<1
∵0<a<1,故
y=log
a[1-(
)
x]為減函數(shù),且y>0
故選C
點(diǎn)評:函數(shù)y=ax和函數(shù)y=logax,在底數(shù)a>1時,指數(shù)函數(shù)和對數(shù)函數(shù)在其定義域上均為增函數(shù),當(dāng)?shù)讛?shù)0<a<1時,指數(shù)函數(shù)和對數(shù)函數(shù)在其定義域上均為減函數(shù),而f(-x)與f(x)的圖象關(guān)于Y軸對稱,其單調(diào)性相反,故函數(shù)y=a-x和函數(shù)y=loga(-x),在底數(shù)a>1時,指數(shù)函數(shù)和對數(shù)函數(shù)在其定義域上均為減函數(shù),當(dāng)?shù)讛?shù)0<a<1時,指數(shù)函數(shù)和對數(shù)函數(shù)在其定義域上均為增函數(shù).