11.已知命題p:?x0∈R,lnx0≥x0-1.命題q:?θ∈R,sinθ+cosθ>-1.則下列命題中為真命題的是( 。
A.p∧(?q)B.(?p)∨qC.(?p)∧(?q)D.p∧q

分析 先判斷命題p和命題q的真假,進而根據(jù)復(fù)合命題真假判斷的真值表,得到答案.

解答 解::?x0=1∈R,使lnx0=x0-1=0.
故命題p:?x0∈R,lnx0≥x0-1為真命題,
當θ∈[π+2kπ,$\frac{3π}{2}$+2kπ]時,sinθ+cosθ∈[$-\sqrt{2}$,-1],
故命題q:?θ∈R,sinθ+cosθ>-1為假命題,
故命題p∧(?q)為真命題,
命題(?p)∨q,(?p)∧(?q),p∧q為假命題,
故選:A

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,全稱命題和特稱命題等知識點,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)橢圓C$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點分別為F1,F(xiàn)2,l是右準線,若橢圓上存在一點P使得PF1是P到直線l的距離的3倍,則橢圓的離心率的取值范圍是[$\sqrt{7}$-2,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知不等式$\frac{{{2^x}+1}}{3}>1-\frac{{{2^x}-1}}{2}$的解集為M,則下列說法正確的是( 。
A.{0}⊆MB.M=∅C.-1∈MD.2∈M

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,△PAB的頂點A、B為定點,P為動點,其內(nèi)切圓O1與AB、PA、PB分別相切于點C、E、F,且$AB=2\sqrt{3}$,||AC|-|BC||=2.
(1)求||PA|-|PB||的值;
(2)建立適當?shù)钠矫嬷苯亲鴺讼,求動點P的軌跡W的方程;
(3)設(shè)l是既不與AB平行也不與AB垂直的直線,線段AB的中點O到直線l的距離為 $\sqrt{2}$,直線l與曲線W相交于不同的兩點G、H,點M滿足$2\overrightarrow{OM}=\overrightarrow{OG}+\overrightarrow{OH}$,證明:$2|\overrightarrow{OM}|=|\overrightarrow{GH}|$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)$y=\sqrt{{{log}_2}(x-3)}$的定義域是( 。
A.(3,+∞)B.(3,4]C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)f'(x),若f(x)的極大值為f(1),極小值為f(-1),則函數(shù)y=f(1-x)f'(x)的圖象有可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)F1,F(xiàn)2是橢圓$\frac{x^2}{a^2}+\frac{y^2}{25}=1(a<5)$的兩個焦點,且|F1F2|=8,弦AB過點F2,則△ABF1的周長為( 。
A.12B.20C.2$\sqrt{41}$D.4$\sqrt{41}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知某幾何體的三視圖如圖所示,其中俯視圖中的曲線是一段半圓弧,則這個幾何體的表面積是12+π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)f(x)滿足f(3x+2)=9x+8,則f(x)的解析式是( 。
A.f(x)=9x+8B.f(x)=3x+2
C.f(x)=-3x-4D.f(x)=3x+2或f(x)=-3x-4

查看答案和解析>>

同步練習冊答案