已知定義在[1,+∞)上的函數(shù)數(shù)學(xué)公式當(dāng)x∈[2n-1,2n](n∈N*)時,函數(shù)f(x)的圖象與x軸圍成的圖形面積為S,則S=


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
B
分析:本選項題利用特殊值法解決.取n=1,由題意可知當(dāng)x∈[1,2]時,函數(shù)f(x)的圖象與x軸圍成的圖形是一個三角形,然后根據(jù)三角形的面積的運(yùn)算公式進(jìn)行求解即可.
解答:解:令n=1得,[2n-1,2n]=[1,2],
當(dāng)x∈[1,2]時,
函數(shù)f(x)的圖象與x軸圍成的圖形是一個三角形,如圖所示,
其面積為:S=×1×4=2,
故選:B.
點評:本題考查函數(shù)的圖象與圖象變化、分段函數(shù)的應(yīng)用等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、已知定義在[-1,1]上的函數(shù)y=f(x)的值域為[-2,0],則函數(shù)y=f(cos2x)的值域為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[1,4]上的函數(shù)f(x)=x2-2bx+
b4
(b≥1),
( I)求f(x)的最小值g(b);
( II)求g(b)的最大值M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[1,8]上的函數(shù) f(x)=
4-8|x-
3
2
|,  1≤x≤2
1
2
f(
x
2
),  2<x≤8
則下列結(jié)論中,錯誤的是(  )
A、f(6)=1
B、函數(shù)f(x)的值域為[0,4]
C、將函數(shù)f(x)的極值由大到小排列得到數(shù)列{an},n∈N*,則{an}為等比數(shù)列
D、對任意的x∈[1,8],不等式xf(x)≤6恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[1,+∞)上的函數(shù)f(x)=
4-8|x-
3
2
|,1≤x≤2
1
2
f(
x
2
),x>2
當(dāng)x∈[2n-1,2n](n∈N*)時,函數(shù)f(x)的圖象與x軸圍成的圖形面積為S,則S=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[-1,1]上的奇函數(shù)f(x),當(dāng)x∈(0,1]時,f(x)=
2x
4x+1

(Ⅰ)試用函數(shù)單調(diào)性定義證明:f(x)在(0,1]上是減函數(shù);
(Ⅱ)若a>
1
3
,f(a)+f(1-3a)>0,求實數(shù)a的取值范圍;
(Ⅲ)要使方程f(x)=x+b在[-1,1]上恒有實數(shù)解,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案