設(shè)α表示平面,a、b、l表示直線,給出下列命題,
a⊥l
b⊥l
a?α
b?α
⇒l⊥α
;②
a∥α
a⊥b
⇒b⊥α
;③
a?α
b?α
a⊥b
⇒a⊥α
;④直線l與平面α內(nèi)無數(shù)條直線垂直,則l⊥α.
其中正確結(jié)論的個(gè)數(shù)為( 。
A、0B、1C、2D、3
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:由α表示平面,a、b、l表示直線,知:
a⊥l
b⊥l
a?α
b?α
⇒l⊥α
,不正確,
因?yàn)橹本a,b不一定相交,
只有a,b是相交線時(shí)才成立,故①錯(cuò)誤;
a∥α
a⊥b
⇒b⊥α
,或b?α,或b∥α,或b與α相交但不垂直,故②錯(cuò)誤;
a?α
b?α
a⊥b
⇒a⊥α
,不正確,平面外的一條直線垂直于平面內(nèi)的一條直線,
無法判定平面外的直線垂直于平面,故③錯(cuò)誤;
④直線l與平面α內(nèi)無數(shù)條直線垂直,如果這無數(shù)條直線都是平行線,
則不能判斷l(xiāng)⊥α,故④錯(cuò)誤.
故選:A.
點(diǎn)評(píng):本題考查真假命題的判斷,是基礎(chǔ)題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有101和102兩個(gè)房間,甲、乙、丙、丁四人任意兩人被安排在同一房間,則甲被安排在101的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
3
x3-x
的單調(diào)遞減區(qū)間為( 。
A、[-1,1]
B、[0,1]
C、[1,+∞)
D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=|sinx|+sinx的值域?yàn)椋ā 。?/div>
A、[-1,1]
B、[-2,2]
C、[-2,0]
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2(2-x),則f(x)的單調(diào)增區(qū)間是( 。
A、x∈(0,
4
3
B、x∈(
4
3
,+∞)
C、x∈(-∞,0)
D、x∈(-∞,0)∪(
4
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an=(2n-1)•sin(
π
2
+nπ),則它的前2014項(xiàng)和等于( 。
A、-2015B、-2014
C、2014D、2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2x+y=0是雙曲線x2-λy2=1的一條漸近線,則雙曲線的離心率是( 。
A、
2
B、
3
C、
5
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人連續(xù)射擊8次,命中4次且恰好有3次連在一起的結(jié)果有( 。
A、12種B、6種
C、20種D、10種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校舉行定點(diǎn)投籃比賽,規(guī)定每人投籃4次,投中一球得2分,沒有投中得0分,假設(shè)每次投籃投中與否是相互獨(dú)立的.已知小明每次投籃投中的概率都是
1
3
;小強(qiáng)每次投籃投中的概率都是p(0<p<1).
(1)求小明在投籃過程中直到第三次才投中的概率;
(2)求小明在4次投籃后的總得分ξ的分布列和期望;
(3)小強(qiáng)投籃4次,投中的次數(shù)為X,若期望E(X)=1,求p和X的方差V(X).

查看答案和解析>>

同步練習(xí)冊(cè)答案