設(shè)P為雙曲線x2-
y2
12
=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是該雙曲線的左、右焦點(diǎn),若△PF1F2的面積為12,則∠F1PF2等于
π
2
π
2
分析:由雙曲線方程算出焦距|F1F2|=2
13
,根據(jù)雙曲線定義得到||PF1|-|PF2||=2.然后在△PF1F2中運(yùn)用余弦定理,得出關(guān)于|PF1|、|PF2|和cos∠F1PF2的式子;而△PF1F2的面積為12,得到|PF1|、|PF2|和sin∠F1PF2的另一個(gè)式子.兩式聯(lián)解即可得到∠F1PF2的大。
解答:解:∵雙曲線方程為x2-
y2
12
=1,
∴c2=a2+b2=13,可得雙曲線的左焦點(diǎn)F1(-
13
,0),右焦點(diǎn)F2
13
,0)
根據(jù)雙曲線的定義,得||PF1|-|PF2||=2a=2
∴由余弦定理,得|F1F2|2=(|PF1|-|PF2|)2+(2-2cos∠F1PF2)|PF1|•|PF2|
即:52=4+(2-2cos∠F1PF2)|PF1|•|PF2|,可得|PF1|•|PF2|=
48
2-2cos∠F1PF2

又∵△PF1F2的面積為12,
1
2
|PF1|•|PF2|sin∠F1PF2=12,即
24sin∠F1PF2
2-2cos∠F1PF2
=12
結(jié)合sin2∠F1PF2+cos2∠F1PF2=1,
解之得sin∠F1PF2=1且cos∠F1PF2=0,
∴∠F1PF2等于
π
2

故答案為:
π
2
點(diǎn)評(píng):本題給出雙曲線上一點(diǎn)P與雙曲線兩個(gè)焦點(diǎn)F1、F2構(gòu)成的三角形面積為12,求∠F1PF2的大小,著重考查了雙曲線的標(biāo)準(zhǔn)方程和簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

設(shè)P是圓x2+(y-2)2=1上的一個(gè)動(dòng)點(diǎn),Q為雙曲線x2-y2=1上的一個(gè)動(dòng)點(diǎn),則|PQ|的最小值為( 。

A.     B.      C.-2      D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是圓x2+(y-2)2=1上的一個(gè)動(dòng)點(diǎn),Q為雙曲線x2-y2=1上的一個(gè)動(dòng)點(diǎn),則|PQ|的最小值為(  )

A.

B.

C. -2

D. -1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是圓x2+(y-2)2=1上的一個(gè)動(dòng)點(diǎn),Q為雙曲線x2-y2=1上的一個(gè)動(dòng)點(diǎn),則|PQ|的最小值為(  )

A.                   B.            C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是圓x2+(y-2)2=1上的一個(gè)動(dòng)點(diǎn),Q為雙曲線x2-y2=1上的一個(gè)動(dòng)點(diǎn),則|PQ|的最小值為(    )

A.                B.                C.              D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是圓x2+(y-2)2=1上的一個(gè)動(dòng)點(diǎn),Q為雙曲線x2-y2=1上的一個(gè)動(dòng)點(diǎn),則|PQ|的最小值為(    )

A.           B.            C.-2            D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案