已知( 數(shù)學(xué)公式-數(shù)學(xué)公式n的展開式中二項(xiàng)式系數(shù)之和為512,且展開式中x3的系數(shù)為9,常數(shù)a的值為________.

16
分析:根據(jù)( -n的展開式中二項(xiàng)式系數(shù)之和為512,,得到2n=512,求出了n的值,求出二項(xiàng)展開式的通項(xiàng),令x的指數(shù)為3求出r的值代入通項(xiàng)求出展開式中x3的系數(shù),解出字母a的值,得到結(jié)果.
解答:因?yàn)椋?-n的展開式中二項(xiàng)式系數(shù)之和為512,
所以2n=512
解得n=9
所以( -9的展開式的通項(xiàng)為

得r=8
所以展開式中x3的系數(shù)為
所以
所以a=16
故答案為16.
點(diǎn)評:本題是一個(gè)典型的二項(xiàng)式問題,主要考查二項(xiàng)式的性質(zhì),注意二項(xiàng)式系數(shù)和項(xiàng)的系數(shù)之間的關(guān)系,這是容易出錯(cuò)的地方,本.二項(xiàng)展開式的通項(xiàng)公式,這是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市新龍中學(xué)高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市新龍中學(xué)高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年廣東省廣州89中學(xué)高一(上)期末數(shù)學(xué)復(fù)習(xí)試卷(必修1、2)(解析版) 題型:解答題

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

同步練習(xí)冊答案