已知f(x)=
3
cos2x+2sin(
2
+x)sin(π-x),x∈R
(Ⅰ)最小正周期及對稱軸方程;
(Ⅱ)已知銳角△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且f(A)=-
3
,a=3,求BC邊上的高的最大值.
考點:三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì),解三角形
分析:(Ⅰ)利用二倍角公式,誘導公式和兩角和公式對函數(shù)解析式進行化簡,利用三角函數(shù)圖象和性質(zhì)求得其最小正周期T,及對稱軸.
(Ⅱ)利用三角形面積公式得到h和bc的關(guān)系式,進而利用余弦定理得到b和c的關(guān)系式,利用基本不等式的性質(zhì)求得bc的最大值,進而求得h的最大值.
解答: 解:(Ⅰ)f(x)=
3
cos2x+2sin(
2
+x)sin(π-x)=
3
cos2x-2cosxsinx=
3
cos2x-sin2x=2(
3
2
cos2x-
1
2
sin2x)=2cos(2x+
π
6
),
∴T=
2
=π,
令2x+
π
6
=kπ(k∈Z),即x=
2
-
π
12
(k∈Z),
∴函數(shù)f(x)的對稱軸方程為x=
2
-
π
12
(k∈Z),
(Ⅱ)∵f(x)=2cos(2x+
π
6
),
∴f(A)=2cos(2A+
π
6
)=-
3
,即cos(2A+
π
6
)=-
3
2
,
∵0<A<
π
2

π
6
<2A+
π
6
6
,
∴2A+
π
6
=
6
,
∴A=
π
3

設(shè)BC邊上的高位h,
則S△ABC=
1
2
bcsinA=
1
2
a•h,即bc=3h,h=
bc
3
,
∵cosA=
b2+c2-a2
2bc
=
b2+c2-9
2bc
=
1
2
,
∴bc+9=b2+c2
∵b2+c2≥2bc,當且僅當b=c時,等號成立.
∴bc+9≥2bc,bc≤9,此時b=c,
∵A=
π
3
,
∴b=c=a=3,等號能成立.
∴此時h=
bc
3
=3.
∴h的最大值為3.
點評:本題主要考查了正弦定理,余弦定理,誘導公式,三角函數(shù)恒等變換的應(yīng)用.考查了基礎(chǔ)的知識的綜合運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a2tanB=b2tanA,則△ABC該的形狀為( 。
A、等腰三角形
B、直角三角形
C、正三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二項式(2x2-
1
3x
6的展開式中第4項的系數(shù)是(  )
A、20B、60
C、-160D、160

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x-a)2ex在x=2時取得極小值.
(1)求實數(shù)a的值;
(2)是否存在區(qū)間[m,n],使得f(x)在該區(qū)間上的值域為[e4m,e4n]?若存在,求出m,n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

電視傳媒為了解某市100萬觀眾對足球節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾每周平均收看足球節(jié)目時間的頻率分布直方圖,將每周平均收看足球節(jié)目時間不低于1.5小時的觀眾稱為“足球迷”,并將其中每周平均收看足球節(jié)目時間不低于2.5小時的觀眾稱為“鐵桿足球迷”.
(1)試估算該市“足球迷”的人數(shù),并指出其中“鐵桿足球迷”約為多少人;
(2)該市要舉辦一場足球比賽,已知該市的足球場可容納10萬名觀眾.根據(jù)調(diào)查,如果票價定為100元/張,則非“足球迷”均不會到現(xiàn)場觀看,而“足球迷”均愿意前往現(xiàn)場觀看.如果票價提高10x元/張(x∈N),則“足球迷”中非“鐵桿足球迷”愿意前往觀看的人數(shù)會減少10x%,“鐵桿足球迷”愿意前往觀看的人數(shù)會減少
100x
x+11
%.問票價至少定為多少元/張時,才能使前往現(xiàn)場觀看足球比賽的人數(shù)不超過10萬人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復(fù)數(shù)z1=(m2+6)+m2i,z2=5m+3mi(m∈R).
(Ⅰ)若z=z1-z2為純虛數(shù),求實數(shù)m的值;
(Ⅱ)當m=1時,若z=
z1
z2
,請問復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點在第幾象限?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設(shè)P1,P2,…,P6為單位圓上逆時針均勻分布的六個點.現(xiàn)從這六個點中任選其中三個不同點構(gòu)成一個三角形,記該三角形的面積為隨機變量S.
(1)求S=
3
2
的概率;
(2)求S的分布列及數(shù)學期望E(S).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

PM2.5是指懸浮在空氣中的空氣動力學當量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.根據(jù)現(xiàn)行國家標準GB3095-2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米-75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標,如圖是某市3月1日到15日每天的PM2.5日均值監(jiān)測數(shù)據(jù).某人隨機選擇3月1日到3月14日中的某一天到達該市,并停留2天.

(Ⅰ)求此人到達當日空氣質(zhì)量為一級的概率:
(Ⅱ)由圖判斷從哪天開始連續(xù)三天PM2.5的日均值方差最大?(可直接給出結(jié)論,不要求證明)
(Ⅲ)求此人在該市停留期間只有1天空氣質(zhì)量超標的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinx,-1),
b
=(
3
cosx,-
1
2
)
,函數(shù)f(x)=(
a
+
b
)•
a
-2
,求函數(shù)f(x)的最小正周期T及值域.

查看答案和解析>>

同步練習冊答案