【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)=ax+b.
(1)若函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上單調遞增,求實數(shù)a的取值范圍;
(2)若直線g(x)=ax+b是函數(shù)f(x)=lnx﹣ 圖象的切線,求a+b的最小值;
(3)當b=0時,若f(x)與g(x)的圖象有兩個交點A(x1 , y1),B(x2 , y2),求證:x1x2>2e2
(取e為2.8,取ln2為0.7,取 為1.4)

【答案】
(1)解:h(x)=f(x)﹣g(x)= ,則 ,

∵h(x)=f(x)﹣g(x)在(0,+∞)上單調遞增,∴對x>0,都有 ,

即對x>0,都有

,∴a≤0,

故實數(shù)a的取值范圍是(﹣∞,0]


(2)解:設切點 ,則切線方程為 ,

,亦即 ,

,由題意得 ,

令a+b=φ(t)=﹣lnt+t2﹣t﹣1,則 ,

當t∈(0,1)時,φ'(t)<0,φ(t)在(0,1)上單調遞減;

當t∈(1,+∞)時,φ'(t)>0,φ(t)在(1,+∞)上單調遞增,

∴a+b=φ(t)≥φ(1)=﹣1,故a+b的最小值為﹣1


(3)證明:由題意知 , ,

兩式相加得 ,

兩式相減得 ,

,

,

不妨令0<x1<x2,記 ,

,則 ,

在(1,+∞)上單調遞增,則

,則 ,

,

,

,即 ,

,則x>0時, ,

∴G(x)在(0,+∞)上單調遞增,

,

,即


【解析】(1)要使h(x)在(0,+)上單調遞增,則在(0,+)內h'(x)0恒成立;(2)設出切點坐標,寫出切線方程,構造函數(shù)a+b==-lnt+t2-t-1,利用導數(shù)討論函數(shù)的單調性,進而求出的最小值;(3)構造函數(shù)F(t)=lnt-,根據(jù)函數(shù)F(x)的單調性可知lnt,構造函數(shù)G(x)=lnx-,并利用導數(shù)討論G(x)的單調性.
【考點精析】掌握利用導數(shù)研究函數(shù)的單調性是解答本題的根本,需要知道一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 有兩個極值點x1 , x2 , 其中b為常數(shù),e為自然對數(shù)的底數(shù).
(1)求實數(shù)b的取值范圍;
(2)證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在(0,+∞)上的單調遞減函數(shù),f′(x)是其導函數(shù),若 >x,則下列不等關系成立的是( )
A.f(2)<2f(1)
B.3f(2)>2f(3)
C.ef(e)<f(e2
D.ef(e2)>f(e3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x+m(m∈R)的圖象與x軸相交于A(x1 , 0),B(x2 , 0)兩點,且x1<x2
(I)若函數(shù)f(x)的最大值為2,求m的值;
(Ⅱ)若 恒成立,求實數(shù)k的取值范圍;
(Ⅲ)證明:x1x2<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列{an}滿足a1 , 2a2 , a3+6成等差數(shù)列,且a42=9a1a5
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設 ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn(n∈N*),滿足Sn=2an﹣1.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足 ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點M到點N(1,0)和直線l:x=﹣1的距離相等. (Ⅰ)求動點M的軌跡E的方程;
(Ⅱ)已知不與l垂直的直線l'與曲線E有唯一公共點A,且與直線l的交點為P,以AP為直徑作圓C.判斷點N和圓C的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:x2+4y2=4.
(1)求橢圓C的離心率;
(2)橢圓C的長軸的兩個端點分別為A,B,點P在直線x=1上運動,直線PA,PB分別與橢圓C相交于M,N兩個不同的點,求證:直線MN與x軸的交點為定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩隊參加奧運知識競賽,每隊3人,每人回答一個問題,答對者對本隊贏得一分,答錯得零分.假設甲隊中每人答對的概率均為 ,乙隊中3人答對的概率分別為 ,且各人回答正確與否相互之間沒有影響.用ξ表示甲隊的總得分.
(Ⅰ)求隨機變量ξ的分布列和數(shù)學期望;
(Ⅱ)用A表示“甲、乙兩個隊總得分之和等于3”這一事件,用B表示“甲隊總得分大于乙隊總得分”這一事件,求P(AB).

查看答案和解析>>

同步練習冊答案