在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。

(1)請在線段CE上找到一點F,使得直線BF∥平面ACD,并證明;
(2)求平面BCE與平面ACD所成銳二面角的大;
(1)點F應(yīng)是線段CE的中點(2)

試題分析:解:以D點為原點建立如圖所示的空間直角坐標系,使得軸和軸的正半軸分別經(jīng)過點A和點E,則各點的坐標為,,,

(1)點F應(yīng)是線段CE的中點,下面證明:
設(shè)F是線段CE的中點,則點F的坐標為
,∴
,而是平面ACD的一個法向量,此即證得BF∥平面ACD;
(2)設(shè)平面BCE的法向量為,則,且,
,
,不妨設(shè),則,即,
∴所求角滿足,∴;
點評:在立體幾何中,?嫉闹R點是:幾何體的表面積與體積、直線與平面平行的判定定理、直線與平面垂直的判定定理和二面角。對于二面角,建立空間直角坐標系能使問題簡化。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面是直角梯形,,且,頂點在底面內(nèi)的射影恰好落在的中點上.

(1)求證:
(2)若,求直線所成角的 余弦值;
(3)若平面與平面所成的二面角為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在邊長是2的正方體-中,分別為
的中點. 應(yīng)用空間向量方法求解下列問題.

(1)求EF的長
(2)證明:平面;
(3)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1中,BC⊥側(cè)面AA1C1C,AC=BC=1,CC1=2, ∠CAA1= ,D、E分別為AA1、A1C的中點.

(1)求證:A1C⊥平面ABC;(2)求平面BDE與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點.沿BD將△BCD翻折到△,使得平面⊥平面ABD.

(Ⅰ)求證:平面ABD;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知空間直角坐標系中有一點,點平面內(nèi)的直線    上的動點,則兩點的最短距離是(   )
A.B.C.3D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖是一個水平放置的正三棱柱,是棱的中點.正三棱柱的主視圖如圖

(Ⅰ) 圖中垂直于平面的平面有哪幾個?(直接寫出符合要求的平面即可,不必說明或證明)
(Ⅱ)求正三棱柱的體積;
(Ⅲ)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
一個幾何體是由圓柱和三棱錐組合而成,點、、在圓的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖3所示,其中,
(1)求證:;
(2)求二面角的平面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知平行六面體中,    

查看答案和解析>>

同步練習冊答案