3.(2x-a)5的展開式中,x4的系數(shù)為-80,則a=1.

分析 先求出二項式展開式的通項公式,再令x的冪指數(shù)等于4,求得r的值,即可求得展開式中x4的系數(shù);再結(jié)合x4的系數(shù)為-80,求得a的值.

解答 解:(2x-a)5的展開式的通項公式為 Tr+1=c5r•(-a)5-r•(2x)r,令r=4,
可得展開式中x4的系數(shù)為c54•(-a)5-4•(2)4=-80,求得a=1,
故答案為:1

點評 本題主要考查二項式定理的應(yīng)用,二項式展開式的通項公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|2x-1|.
(Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m-1(m>0)的解集為[-2,2],求實數(shù)m的值;
(Ⅱ)若不等式f(x)≤2y+$\frac{a}{{2}^{y}}$+|2x+3|,對任意的實數(shù)x,y∈R恒成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平面直角坐標系xOy中,已知R(x0,y0)是橢圓$\frac{{y}^{2}}{36}$+$\frac{{x}^{2}}{18}$=1上的一點,從原點O向圓R(x-x02+(y-y02=12作兩條切線,分別交橢圓于P,Q兩點.
(1)若R點在第一象限,且直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,分別記為k1,k2,求k1•k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2.
(Ⅰ)證明:平面BAP⊥平面DAP;
(Ⅱ)點M為線段AB(含端點)上一點,設(shè)直線MP與平面DCP所成角為α,求sinα的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在區(qū)間[1,2]上隨機取一個數(shù)r,則使得圓x2+y2=r2與直線x+y+2=0存在公共點的概率為2-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=xa+ax的導(dǎo)函數(shù)f'(x)=2x+2,則數(shù)列{${\frac{1}{f(n)}$}的前9項和是( 。
A.$\frac{29}{36}$B.$\frac{31}{44}$C.$\frac{36}{55}$D.$\frac{43}{66}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知tan(α+$\frac{π}{4}$)=-2,則tanα=3,cos2α-sin2α=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知單位圓上三個不同點A,B,C,若|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=2,則向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.關(guān)于x的二次方程mx2-2(m+1)x+m=0有兩個不等的實數(shù)根,則實數(shù)m的取值范圍是(-$\frac{1}{2}$,0)∪(0,+∞).

查看答案和解析>>

同步練習(xí)冊答案