設(shè)函數(shù)f(x)=
2x
x
(t-1)dt,則f′(1)=
 
考點(diǎn):定積分,導(dǎo)數(shù)的運(yùn)算
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)積分公式,先求出f(x)的不等式,然后求導(dǎo)即可得到結(jié)論.
解答: 解:f(x)=
2x
x
(t-1)dt=(
1
2
t2-t
)|
 
2x
x
=
3
2
x2-x
,
∴f′(x)=3x-1,
即f′(1)=3-1=2,
故答案為:2.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的計(jì)算,利用積分公式求出函數(shù)f(x)的表達(dá)式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的公差為d,且a1,d∈N*.若設(shè)M1是從a1開(kāi)始的前t1項(xiàng)數(shù)列的和,即M1=a1+…+a t 1(1≤t1,t1∈N*),M2=at1+1+at1+2+…+at2(1<t2∈N*),如此下去,其中數(shù)列{Mi}是從第ti-1+1(t0=0)開(kāi)始到第ti(1<ti)項(xiàng)為止的數(shù)列的和,即Mi=ati-1+1+…+ati(1≤ti,ti∈N*).
(1)若數(shù)列an=n(1≤n≤13,n∈N*),試找出一組滿足條件的M1,M2,M3,使得:M22=M1M3;
(2)試證明對(duì)于數(shù)列an=n(n∈N*),一定可通過(guò)適當(dāng)?shù)膭澐,使所得的?shù)列{Mn}中的各數(shù)都為平方數(shù);
(3)若等差數(shù)列{an}中a1=1,d=2.試探索該數(shù)列中是否存在無(wú)窮整數(shù)數(shù)列{tn},(1≤t1<t2<t3<…<tn),n∈N*,使得{Mn}為等比數(shù)列,如存在,就求出數(shù)列{Mn};如不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin2(x+
π
4
)-sin2(x-
π
4
)是以
 
為周期的
 
函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=loga|x|在(0,1)上有f(x)>0,則x•f(x)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用適當(dāng)?shù)姆?hào)填空
(1)a
 
{a,b,c};
(2)0
 
{x|x2=0};
(3)∅
 
{x∈R|x2+1=0};
(4){0,1}
 
N;
(5){0}
 
{x|x2=x};
(6){2,1}
 
{x|x2-3x+2=0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式ax2+3ax+a-2<0的解集為R,則實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=3,2=-3,a3=3,a4=-3,則數(shù)列{an}的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P是雙曲線
x2
a2
-
y2
b2
=1(a>,b>0)
右支上一點(diǎn),F(xiàn)1與F2是左右焦點(diǎn),O為原點(diǎn),則t=
PF1+PF2
OP
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=cos(
πx
4
-
π
3
)-cos
πx
4

(1)求f(x)的最小正周期;
(2)設(shè)g(x)=f(-2-x),當(dāng)x∈[0,2]時(shí),求函數(shù)y=g(x)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案