(本題14分)已知向量,,設(shè)函數(shù)的圖象關(guān)于直線對稱,其中,為常數(shù),且.

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)若的圖象經(jīng)過點,求函數(shù)在區(qū)間上的取值范圍.

 

【答案】

(1),(2)

【解析】利用平面向量的數(shù)量積、三角函數(shù)的圖象的性質(zhì)及三角恒等變換求解。

試題分析:

(Ⅰ)因為

.                          

由直線圖象的一條對稱軸,可得,        

所以,即.             

,所以,故.                    

所以的最小正周期是.  ………………………………………7分                                    

(Ⅱ)由的圖象過點,得,

,即.          

,                                         

,有,

所以,得,

故函數(shù)上的取值范圍為…………………………………………….14分

考點:本題主要考查了平面向量的數(shù)量積、三角函數(shù)的圖象的性質(zhì)及三角恒等變換?疾榱朔治鰡栴}的能力及運算求解能力。

點評:解決此題的關(guān)鍵是寫出函數(shù)的解析式,掌握函數(shù)的性質(zhì),還要有較好的運算能力,難度中等。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012屆廣東省潮汕兩市名校高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題

(本題滿分14分)
已知函數(shù)的圖象向右平移2個單位,得到的圖象.
(1)求函數(shù)的解析式;
(2) 若函數(shù)與函數(shù)的圖象關(guān)于直線對稱,求函數(shù)的解析式;
(3)設(shè)已知的最小值是,且求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年四川省成都市玉林中學(xué)高一下學(xué)期3月月考數(shù)學(xué)試卷 題型:解答題

(A、B選做一題,若兩題都做,以A題計分,本題滿分14分)
A.已知向量,,,函數(shù)
(1)求函數(shù)的最大值與最小正周期;
(2)求使不等式成立的的取值集合.
(3)若將向左平移個單位,再把圖象所有點的橫坐標(biāo)縮短到原來的倍得到,關(guān)于的方程有且僅有一個解,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三10月階段性測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)已知函數(shù)(其中)的圖象與軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個點為

(1)求的解析式;

(2)若求函數(shù)的值域;

(3)將函數(shù)的圖象向左平移個單位,再將圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變,求經(jīng)以上變換后得到的函數(shù)解析式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省高三8月第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)

已知橢圓C:(a>b>0)的離心率為,短軸一個端點到右焦點的距離為3.

(1)求橢圓C的方程;

(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年四川省成都市高一下學(xué)期3月月考數(shù)學(xué)試卷 題型:解答題

(A、B選做一題,若兩題都做,以A題計分,本題滿分14分)

A. 已知向量,,函數(shù)

(1)求函數(shù)的最大值與最小正周期;

(2)求使不等式成立的的取值集合.

(3)若將向左平移個單位,再把圖象所有點的橫坐標(biāo)縮短到原來的倍得到,關(guān)于的方程有且僅有一個解,求的取值范圍。

 

 

查看答案和解析>>

同步練習(xí)冊答案