精英家教網 > 高中數學 > 題目詳情

(08年永定一中二模文)(12分)

已知方向向量的直線過點和橢圓的焦點,且橢圓C的中心O和橢圓的右準線上的點B滿足:.

(1)求橢圓C的方程;

(2)設、是橢圓C上兩個不同點,且的縱坐標之和為1,記、橫坐標之積,問是否存在最小的常數,使恒成立?若存在,求出的值;若不存在,說明理由.

解析:(1)

與B點關于直線對稱.

……………………①

過原點垂直于的直線為………………②

由①②得.

橢圓中心的對稱點在橢圓的右準線上.

過焦點         

故橢圓c的方程為.   …………………………………………………………6分

(2)若直線不含題意,若直線MN不平行于y軸,則設直線MN的方程為,設.

……………………………………8分

……………………①

由已知①得

……………………………………………………………………10分

 上增函數.

   故存在最小常數…………………………12分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(08年永定一中二模文)(12分)

已知函數在點取得極小值的取值范圍為.求:

(1)的解析式;(2)的極大值;

(3)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年永定一中二模文)(12分)

一個口袋中裝有個紅球和5個白球,一次摸獎從中摸出兩個球,兩個球顏色不同則為中獎.

(1)試用表示一次摸獎中獎的概率;

(2)若=5,求三次摸獎(每次摸獎后放回)恰有一次中獎的概率;

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年永定一中二模理)(14分)

直線過點P斜率為,與直線交于點A,與軸交于點B,點A,B的橫坐標分別為,記.

(1)求的解析式;

(2)設數列滿足,求數列的通項公式;

(3)在(2)的條件下,當時,證明不等式:.

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年永定一中二模理)(12分)

如圖,四棱錐中,底面是邊長為2的正方形,,

,中點.

(1)求證:平面;     

(2)求二面角的大小;

(3)在線段上是否存在點,使得點到平面的距離為?若存在,確定

的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年永定一中二模理)(本小題滿分12分)

已知向量.

(1)若的夾角;

(2)當的最大值.

查看答案和解析>>

同步練習冊答案