有甲、乙兩個盒子,甲盒子中有8張卡片,其中2張寫有數(shù)字0,3張寫有數(shù)字1,3張寫有數(shù)字2;乙盒子中有8張卡片,其中3張寫有數(shù)字0,2張寫有數(shù)字1,3張寫有數(shù)字2.
(1)如果從甲盒子中取2張卡片,從乙盒中取1張卡片,那么取出的3張卡片都寫有1的概率是多少?
(2)如果從甲、乙兩個盒子中各取1張卡片,設取出的兩張卡片數(shù)字之和為X,求X的概率分布.

(1)   (2) X的概率分布為:

X
0
1
2
3
4
P





 

解析解:(1)取出3張卡片都寫有1的概率為.
(2)X所有可能取的值為0,1,2,3,4.
P(X=0)=
P(X=1)=,
P(X=2)=,
P(X=3)=,
P(X=4)=.
∴X的概率分布為:

X
0
1
2
3
4
P





練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球、2個黑球,乙箱子里裝有1個白球、2個黑球,這些球除顏色外完全相同,每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結束后將球放回原箱)
(1)求在一次游戲中,①摸出3個白球的概率,②獲獎的概率;
(2)求在兩次游戲中獲獎次數(shù)X的分布列及數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若一批白熾燈共有10000只,其光通量X服從正態(tài)分布,其正態(tài)分布密度函數(shù)是f(x)=,x∈(-∞,+∞),試求光通量在下列范圍內(nèi)的燈泡的個數(shù).
(1)(203,215);(2)(191,227).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某超市在節(jié)日期間進行有獎促銷,凡在該超市購物滿400元的顧客,將獲得一次摸獎機會,規(guī)則如下:獎盒中放有除顏色外完全相同的1個紅球,1個黃球,1個白球和1個黑球.顧客不放回的每次摸出1個球,若摸到黑球則停止摸獎,否則就繼續(xù)摸球.規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.
(1)求1名顧客摸球2次停止摸獎的概率;
(2)記為1名顧客摸獎獲得的獎金數(shù)額,求隨機變量的分布律和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩人破譯一密碼,它們能破譯的概率分別為,試求:
(1)兩人都能破譯的概率;
(2)兩人都不能破譯的概率;
(3)恰有一人能破譯的概率;
(4)至多有一人能破譯的概率;
(5)若要使破譯的概率為99%,至少需要多少乙這樣的人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲乙兩個同學進行定點投籃游戲,已知他們每一次投籃投中的概率均為,且各次投籃的結果互不影響.甲同學決定投5次,乙同學決定投中1次就停止,否則就繼續(xù)投下去,但投籃次數(shù)不超過5次.
(1)求甲同學至少有4次投中的概率;
(2)求乙同學投籃次數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

從1,2,3,4,5,6中不放回地隨機抽取四個數(shù)字,記取得的四個數(shù)字之和除以4的余數(shù)為,除以3的余數(shù)為
(1)求X=2的概率;
(2)記事件為事件,事件為事件,判斷事件與事件是否相互獨立,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲乙兩人進行乒乓球比賽,約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或打滿6局時停止.設甲在每局中獲勝的概率為,乙在每局中獲勝的概率為,且各局勝負相互獨立,比賽停止時一共已打局:
(1)列出隨機變量的分布列;
(2)求的期望值E

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知關于x的一元二次方程x2-2(a-2)x-b2+16=0.
(1)若a、b是一枚骰子擲兩次所得到的點數(shù),求方程有兩正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程沒有實根的概率.

查看答案和解析>>

同步練習冊答案