精英家教網 > 高中數學 > 題目詳情

已知兩點,.以為圓心, 為半徑作圓交軸于點(異于),記作⊙;以為圓心, 為半徑作圓交軸于點(異于),記作⊙;……;以為圓心,為半徑作圓交軸于點(異于),記作⊙.當時,過原點作傾斜角為的直線與⊙交于,.考察下列論斷:

時,;當時,;當時,;當時,            .

由以上論斷推測一個一般的結論:對于,                                     .

 

【答案】

;

【解析】

試題分析:列出圓心坐標和半徑的關系,,設點的橫坐標組成的數列為,則,故(其中為圓心到直線的距離的平方),將代入得.

考點:1.數列的綜合應用;2.點到直線的距離.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓C為圓心,5為半徑,過點S作直線與圓C交于A,B兩點.

(1)若AB=8,求直線的方程;

(2)當直線的斜率為時,在上求一點P,使P到圓C的切線長等于PS

(3)設AB的中點為N,試在平面上找一定點M,使MN的長為定值

查看答案和解析>>

科目:高中數學 來源:2012-2013學年吉林省四校聯(lián)合體高三第一次診斷性測試文科數學試卷(解析版) 題型:解答題

已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為,且||=2,

點(1,)在該橢圓上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切是圓的方程.

 

查看答案和解析>>

科目:高中數學 來源:2013屆河北省高二第二次調研理科數學試卷(解析版) 題型:解答題

(本題12分)已知橢圓的離心率,過兩點的直線到原點的距離是

(1)求橢圓的方程 ; 

(2)已知直線交橢圓于不同的兩點,且都在以為圓心的圓上,求的值.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年寧夏高三第五次月考文科數學 題型:解答題

(本小題滿分12分)

已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為,且||=2,

點(1,)在該橢圓上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切是圓的方程.

 

 

 

查看答案和解析>>

同步練習冊答案